
ELECTRONICS, VOL. 29, NO. 2, DECEMBER 2025 53

Abstract—Hardware-intensive signal processing has seen tre-
mendous growth over the last few decades, owing to the advances
in VLSI technology. This has resulted in a significant paradigm
shift, wherein different computational functionalities are increas-
ingly implemented using different hardware platforms. The squar-
ing function is one such operation that finds its application in many
signal-processing tasks. Since squaring is a specific case of multi-
plication, traditional multiplication algorithms can be adapted to
create high-performance squaring architectures. In this paper, we
present a squaring architecture that is based on the CORDIC algo-
rithm. The hardware efficiency of the CORDIC algorithm enables
it to compute different mathematical functions using only shift and
add operations. By operating the algorithm in linear mode, the
CORDIC computations can be modeled to emulate the squaring
function. Our 8-bit CORDIC-based squaring architecture shows a
25% and 38% reduction in PDAP over the existing best design for
ASIC and FPGA platforms, respectively.

Index Terms— CORDIC algorithm, DSP, Fixed-point arithme-
tic, Pipelining, Vedic Mathematics.

Original Research Paper
DOI: 10.53314/ELS2529053К

I. Introduction

Multiplication based functions like Multiply-Add (MAD),
Multiply-Accumulate (MAC), Convolution, etc., form

the core of many digital signal processing (DSP) applications
[1], [2]. Image Processing, Neural Networks, Audio-Video Pro-
cessing, and Machine Learning are a few of the many areas that
have multiplication-inspired computations as an integral part of
their functionality. The squaring function is one such operation
that finds its application in many signal-processing tasks [3],
[4]. The squaring operation can be seen as a specific instance
of multiplication where the multiplicand and multiplier have
the same value [5]. Evidently, most of the existing work related
to squaring architectures is actually based on the optimization
of the multiplication operation for the specific case of identi-
cal operands [6]. The performance bottleneck for a multiplier
unit is typically limited by the partial product reduction (PPR)
stage [7]. Traditionally, Wallace and Dadda trees have been

used to reduce the partial product matrix (PPM) [8], [9]. Nu-
merous modifications to these approaches have been proposed.
Prominent among them are the approximation techniques that
focus on designing compressors that reduce the complexity of
the PPR stage. A 4:2 compressor-based multiplier based on the
correlation of input data is presented in [10].

Approximate compressor trees with reduced accumulation
layers are presented in [11], [12]. An approximate multiplier
based on an inexact 4:2 compressor that shares the logic required
for sum and carry is presented in [13]. Similarly, 4:2 compres-
sor-based multipliers based on a constant approximation and
probability-based error correction are presented in [14], [15].
Recursive approximate multipliers based on the divide and
conquer strategy are presented in [16]. These show substantial
improvements in error metrics when compared to traditional
compressor-based multipliers. For field programmable gate ar-
ray (FPGA) based designs, generalized parallel counters (GPC)
are used to construct the compressor tress [17]-[19]. These map
well on FPGAs and are often used to replace traditional Wallace
and Dadda trees. However, given that squaring is a specific type
of multiplication where both operands are identical, the number
of partial products generated is generally fewer [5]. This reduc-
es the computational complexity of the PPR stage. Evidently, a
squaring architecture is often much faster and consumes fewer
resources compared to an equivalent multiplier [20].

Recently, Vedic mathematics has been used to improve the
performance of multiplier architectures in general [21], [22]
and squaring architectures in specific [5], [6], [20], [23], [24].
In [23], a squaring architecture based on the duplex property of
Dwandwayoga sutra is proposed and implemented using 14nm
FinFET technology. A squaring architecture based on the Urd-
hva Tiryagbhyam sutra from Vedic mathematics is proposed in
[24]. The concept is further modulated in [5], wherein the au-
thors use a combination of Urdhva Tiryagbhyam sutra and Kar-
atsuba-Ofman algorithm to design a recursive squaring archi-
tecture. In [20], the authors present a square architecture based
on the Anurupye sutra of Vedic mathematics. The architecture
is implemented on Kintex-7 FPGA and reports a subsequent
improvement in performance over some earlier Vedic-based de-
signs [24], [25]. However, it fails to match the performance of
the design reported in [5]. The authors in [26] report a squaring
architecture based on the Ekadhikena Purvena sutra of Vedic
mathematics. The resulting structure is multiplier-less but fails
to match the performance of designs in [5] and [20]. Similar
squaring architectures based on the Yavadunam sutra of Vedic
mathematics are reported in [6], [27].

High-Performance and Resource-Efficient Squaring
Architecture for FPGA Platforms

Burhan Khurshid

Manuscript received on August 22nd, 2024. Received in revised form on
January 6th and February 11th, 2025. Accepted for publication on March 10th,
2025.

Burhan Khurshid is with the Department of Electronics & Communication
Engineering, National Institute of Technology Srinagar, J&K, India (e-mail:
burhan@nitsri.ac.in).

ELECTRONICS, VOL. 29, NO. 2, DECEMBER 202554

This paper proposes a novel approximate squaring archi-
tecture based on the CORDIC algorithm. In the past, COR-
DIC-based computations have been employed to calculate
various trigonometric and non-linear transcendental functions.
We operate the CORDIC algorithm in linear mode and modify
the computations to evaluate the squaring operation. We also
conduct a Pareto analysis for an 8-bit CORDIC-based squaring
architecture to determine the optimum number of stages that
justify the accuracy-performance trade-offs for the proposed
architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm. Squar-
ing architecture based on CORDIC is presented in Section III.
Error analysis is done in Section IV. Synthesis, implementation,
and performance comparison are carried out in Section V. Sec-
tion VI concludes the paper and points out any scope for future
work. References are listed at the end.

II. Cordic Algorithm

CORDIC stands for Coordinate Rotation Digital Computer.
The algorithm iteratively rotates a vector through arbitrary an-
gles within linear or non-linear coordinate systems [28]-[30].
The basic rotation equations are given as [31]:

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

	
(1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym) are
the final coordinates of the vector. Since its induction, different
algorithm modifications have been proposed to enable the algo-
rithm to calculate a wider range of mathematical functions [32].
The basic operating modes of the algorithm are the rotation and
the vectoring mode. While the former is characterized by the
reduction of the value of the residual angle with every iteration
[33], the latter performs a finite number of micro-rotations to
compute the angle that aligns the final vector parallel to the
x-axis. A single set of iterative unified CORDIC equations that
encapsulate both modes is given as [34]:

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

	
(2)

	

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

	

(3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular coor-
dinates, respectively.

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to in-
crease the length of the rotating vector with every iteration. The
gain factor ki is, therefore, used to maintain the original length
of the rotating vector. ki is calculated as:

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

	 (4)

III. Proposed Squaring Architecture

CORDIC computations can be modeled to emulate the
squaring operation by performing rotations in a linear coordi-
nate system. From equations (2) and (3), we have:

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

	
For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

Or

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

	
(5)

	

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

	 (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively, then
the equations after the first iteration (i = 0) would be:

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

After second iteration (i = 1):

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

After third iteration (i = 2):

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

After m iterations:

operation. We also conduct a Pareto analysis for an 8-bit
CORDIC-based squaring architecture to determine the
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.

The paper proceeds with the following structure: Section II
briefly discusses the basics of the CORDIC algorithm.
Squaring architecture based on CORDIC is presented in
Section III. Error analysis is done in Section IV. Synthesis,
implementation, and performance comparison are carried out
in Section V. Section VI concludes the paper and points out
any scope for future work. References are listed at the end.

II. CORDIC ALGORITHM
CORDIC stands for Coordinate Rotation Digital Computer.

The algorithm iteratively rotates a vector through arbitrary
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]:

�
𝐱𝐱m
𝐲𝐲m

� = �cos θ −sin θ
sin θ cos θ � �

𝐱𝐱0
𝐲𝐲0

� (1)

(x0, y0) are the starting coordinates of the vector, and (xm, ym)
are the final coordinates of the vector. Since its induction,
different algorithm modifications have been proposed to
enable the algorithm to calculate a wider range of
mathematical functions [32]. The basic operating modes of the
algorithm are the rotation and the vectoring mode. While the
former is characterized by the reduction of the value of the
residual angle with every iteration [33], the latter performs a
finite number of micro-rotations to compute the angle that
aligns the final vector parallel to the x-axis. A single set of
iterative unified CORDIC equations that encapsulate both
modes is given as [34]:

�
𝐱𝐱i+1
𝐲𝐲i+1

� = 𝐤𝐤i � 1 −µ𝛔𝛔i2−i

𝛔𝛔i2−i 1
� �

𝐱𝐱i
𝐲𝐲i

� (2)

𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1

 (3)

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular
coordinates, respectively.

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode

i and n represent the current and the total number of iterations,
respectively. The rotations are pseudo rotations and tend to
increase the length of the rotating vector with every iteration.
The gain factor ki is, therefore, used to maintain the original
length of the rotating vector. ki is calculated as:

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0 (4)

III. PROPOSED SQUARING ARCHITECTURE
CORDIC computations can be modeled to emulate the

squaring operation by performing rotations in a linear
coordinate system. From equations (2) and (3), we have:

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i]

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i]

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

For a linear coordinate system, µ = 0. The value of the gain
factor ki will, therefore, be unity. The above equations will be
modified as:

𝐱𝐱i+1 = 𝐱𝐱i

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i

Or

�
𝐱𝐱i+1
𝐲𝐲i+1

� = � 1 0
𝛔𝛔i2−i 1� �

𝐱𝐱i
𝐲𝐲i

� (5)

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6)

The above equations are iterative. Note that depending upon
the direction of rotation σi may be either +1 or -1. If the initial
values of x, y, and z vectors are xs, ys, and zs, respectively,
then the equations after the first iteration (i = 0) would be:

𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s

𝐳𝐳1 = 𝐳𝐳s ∓ 1

After second iteration (i = 1):

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1

= 𝐳𝐳s ∓ 1 ∓ 2−1

After third iteration (i = 2):

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2

After m iterations:

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1]

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1

ELECTRONICS, VOL. 29, NO. 2, DECEMBER 2025 55

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be
extremely small and may be equated to 0. Therefore, after m
iterations:

𝐳𝐳m = 0

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0

Or

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1

Or

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s

The final equations after m iterations would, therefore, be:

𝐱𝐱m = 𝐱𝐱s (7)

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8)

𝐳𝐳m = 0 (9)

Equivalently, the above set of equations may be written as:

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10)

𝐳𝐳m = 0 (11)

In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture, as
shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every
computation stage. Thus, a sequential iterative architecture is
converted into a combinational (pipelined) feed-forward
architecture.

Fig. 1. Sequential CORDIC-based Square architecture

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the
algorithm will require a lot of stages to converge to an
acceptable level of accuracy. This will incur a lot of hardware
costs and a degradation in performance and accuracy. To avoid
this, the input is scaled down such that its value lies in the
range [0,1). This is done by scaling the x vector by 2n. The
new input is thus represented in fixed-point 2’s complement
format as:

𝐱𝐱s
� = 𝐱𝐱n

� . 𝐱𝐱n−1
� 𝐱𝐱n−2

� 𝐱𝐱n−�
� … … 𝐱𝐱1

� 𝐱𝐱0
� (12)

The value of the input is given as:

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore,
determine the accuracy of the final result. We, therefore,
conducted a detailed Pareto analysis to determine the number
of optimal stages that will justify the accuracy-performance
trade-offs. Our analysis considers the 8-bit CORDIC square
architecture. The added advantage of similar inputs in the
squaring operation lowers the permutations that can exist for
the inputs. A total of 256 input combinations exist for an 8-bit
square architecture, and all such combinations are considered
Pareto points. The Pareto analysis focuses on the variation of
error with the number of computation stages. Specifically, we
have used error rate (ER) and mean error distance (MED) to
quantify the error in our computations. ER is defined as the

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be extremely
small and may be equated to 0. Therefore, after m iterations:

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be
extremely small and may be equated to 0. Therefore, after m
iterations:

𝐳𝐳m = 0

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0

Or

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1

Or

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s

The final equations after m iterations would, therefore, be:

𝐱𝐱m = 𝐱𝐱s (7)

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8)

𝐳𝐳m = 0 (9)

Equivalently, the above set of equations may be written as:

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10)

𝐳𝐳m = 0 (11)

In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture, as
shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every
computation stage. Thus, a sequential iterative architecture is
converted into a combinational (pipelined) feed-forward
architecture.

Fig. 1. Sequential CORDIC-based Square architecture

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the
algorithm will require a lot of stages to converge to an
acceptable level of accuracy. This will incur a lot of hardware
costs and a degradation in performance and accuracy. To avoid
this, the input is scaled down such that its value lies in the
range [0,1). This is done by scaling the x vector by 2n. The
new input is thus represented in fixed-point 2’s complement
format as:

𝐱𝐱s
� = 𝐱𝐱n

� . 𝐱𝐱n−1
� 𝐱𝐱n−2

� 𝐱𝐱n−�
� … … 𝐱𝐱1

� 𝐱𝐱0
� (12)

The value of the input is given as:

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore,
determine the accuracy of the final result. We, therefore,
conducted a detailed Pareto analysis to determine the number
of optimal stages that will justify the accuracy-performance
trade-offs. Our analysis considers the 8-bit CORDIC square
architecture. The added advantage of similar inputs in the
squaring operation lowers the permutations that can exist for
the inputs. A total of 256 input combinations exist for an 8-bit
square architecture, and all such combinations are considered
Pareto points. The Pareto analysis focuses on the variation of
error with the number of computation stages. Specifically, we
have used error rate (ER) and mean error distance (MED) to
quantify the error in our computations. ER is defined as the

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

Or

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be
extremely small and may be equated to 0. Therefore, after m
iterations:

𝐳𝐳m = 0

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0

Or

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1

Or

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s

The final equations after m iterations would, therefore, be:

𝐱𝐱m = 𝐱𝐱s (7)

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8)

𝐳𝐳m = 0 (9)

Equivalently, the above set of equations may be written as:

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10)

𝐳𝐳m = 0 (11)

In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture, as
shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every
computation stage. Thus, a sequential iterative architecture is
converted into a combinational (pipelined) feed-forward
architecture.

Fig. 1. Sequential CORDIC-based Square architecture

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the
algorithm will require a lot of stages to converge to an
acceptable level of accuracy. This will incur a lot of hardware
costs and a degradation in performance and accuracy. To avoid
this, the input is scaled down such that its value lies in the
range [0,1). This is done by scaling the x vector by 2n. The
new input is thus represented in fixed-point 2’s complement
format as:

𝐱𝐱s
� = 𝐱𝐱n

� . 𝐱𝐱n−1
� 𝐱𝐱n−2

� 𝐱𝐱n−�
� … … 𝐱𝐱1

� 𝐱𝐱0
� (12)

The value of the input is given as:

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore,
determine the accuracy of the final result. We, therefore,
conducted a detailed Pareto analysis to determine the number
of optimal stages that will justify the accuracy-performance
trade-offs. Our analysis considers the 8-bit CORDIC square
architecture. The added advantage of similar inputs in the
squaring operation lowers the permutations that can exist for
the inputs. A total of 256 input combinations exist for an 8-bit
square architecture, and all such combinations are considered
Pareto points. The Pareto analysis focuses on the variation of
error with the number of computation stages. Specifically, we
have used error rate (ER) and mean error distance (MED) to
quantify the error in our computations. ER is defined as the

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

Or

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be
extremely small and may be equated to 0. Therefore, after m
iterations:

𝐳𝐳m = 0

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0

Or

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1

Or

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s

The final equations after m iterations would, therefore, be:

𝐱𝐱m = 𝐱𝐱s (7)

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8)

𝐳𝐳m = 0 (9)

Equivalently, the above set of equations may be written as:

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10)

𝐳𝐳m = 0 (11)

In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture, as
shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every
computation stage. Thus, a sequential iterative architecture is
converted into a combinational (pipelined) feed-forward
architecture.

Fig. 1. Sequential CORDIC-based Square architecture

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the
algorithm will require a lot of stages to converge to an
acceptable level of accuracy. This will incur a lot of hardware
costs and a degradation in performance and accuracy. To avoid
this, the input is scaled down such that its value lies in the
range [0,1). This is done by scaling the x vector by 2n. The
new input is thus represented in fixed-point 2’s complement
format as:

𝐱𝐱s
� = 𝐱𝐱n

� . 𝐱𝐱n−1
� 𝐱𝐱n−2

� 𝐱𝐱n−�
� … … 𝐱𝐱1

� 𝐱𝐱0
� (12)

The value of the input is given as:

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore,
determine the accuracy of the final result. We, therefore,
conducted a detailed Pareto analysis to determine the number
of optimal stages that will justify the accuracy-performance
trade-offs. Our analysis considers the 8-bit CORDIC square
architecture. The added advantage of similar inputs in the
squaring operation lowers the permutations that can exist for
the inputs. A total of 256 input combinations exist for an 8-bit
square architecture, and all such combinations are considered
Pareto points. The Pareto analysis focuses on the variation of
error with the number of computation stages. Specifically, we
have used error rate (ER) and mean error distance (MED) to
quantify the error in our computations. ER is defined as the

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

The final equations after m iterations would, therefore, be:

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be
extremely small and may be equated to 0. Therefore, after m
iterations:

𝐳𝐳m = 0

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0

Or

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1

Or

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s

The final equations after m iterations would, therefore, be:

𝐱𝐱m = 𝐱𝐱s (7)

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8)

𝐳𝐳m = 0 (9)

Equivalently, the above set of equations may be written as:

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10)

𝐳𝐳m = 0 (11)

In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture, as
shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every
computation stage. Thus, a sequential iterative architecture is
converted into a combinational (pipelined) feed-forward
architecture.

Fig. 1. Sequential CORDIC-based Square architecture

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the
algorithm will require a lot of stages to converge to an
acceptable level of accuracy. This will incur a lot of hardware
costs and a degradation in performance and accuracy. To avoid
this, the input is scaled down such that its value lies in the
range [0,1). This is done by scaling the x vector by 2n. The
new input is thus represented in fixed-point 2’s complement
format as:

𝐱𝐱s
� = 𝐱𝐱n

� . 𝐱𝐱n−1
� 𝐱𝐱n−2

� 𝐱𝐱n−�
� … … 𝐱𝐱1

� 𝐱𝐱0
� (12)

The value of the input is given as:

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore,
determine the accuracy of the final result. We, therefore,
conducted a detailed Pareto analysis to determine the number
of optimal stages that will justify the accuracy-performance
trade-offs. Our analysis considers the 8-bit CORDIC square
architecture. The added advantage of similar inputs in the
squaring operation lowers the permutations that can exist for
the inputs. A total of 256 input combinations exist for an 8-bit
square architecture, and all such combinations are considered
Pareto points. The Pareto analysis focuses on the variation of
error with the number of computation stages. Specifically, we
have used error rate (ER) and mean error distance (MED) to
quantify the error in our computations. ER is defined as the

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

	 (7)

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be
extremely small and may be equated to 0. Therefore, after m
iterations:

𝐳𝐳m = 0

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0

Or

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1

Or

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s

The final equations after m iterations would, therefore, be:

𝐱𝐱m = 𝐱𝐱s (7)

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8)

𝐳𝐳m = 0 (9)

Equivalently, the above set of equations may be written as:

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10)

𝐳𝐳m = 0 (11)

In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture, as
shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every
computation stage. Thus, a sequential iterative architecture is
converted into a combinational (pipelined) feed-forward
architecture.

Fig. 1. Sequential CORDIC-based Square architecture

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the
algorithm will require a lot of stages to converge to an
acceptable level of accuracy. This will incur a lot of hardware
costs and a degradation in performance and accuracy. To avoid
this, the input is scaled down such that its value lies in the
range [0,1). This is done by scaling the x vector by 2n. The
new input is thus represented in fixed-point 2’s complement
format as:

𝐱𝐱s
� = 𝐱𝐱n

� . 𝐱𝐱n−1
� 𝐱𝐱n−2

� 𝐱𝐱n−�
� … … 𝐱𝐱1

� 𝐱𝐱0
� (12)

The value of the input is given as:

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore,
determine the accuracy of the final result. We, therefore,
conducted a detailed Pareto analysis to determine the number
of optimal stages that will justify the accuracy-performance
trade-offs. Our analysis considers the 8-bit CORDIC square
architecture. The added advantage of similar inputs in the
squaring operation lowers the permutations that can exist for
the inputs. A total of 256 input combinations exist for an 8-bit
square architecture, and all such combinations are considered
Pareto points. The Pareto analysis focuses on the variation of
error with the number of computation stages. Specifically, we
have used error rate (ER) and mean error distance (MED) to
quantify the error in our computations. ER is defined as the

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

	 (8)

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be
extremely small and may be equated to 0. Therefore, after m
iterations:

𝐳𝐳m = 0

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0

Or

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1

Or

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s

The final equations after m iterations would, therefore, be:

𝐱𝐱m = 𝐱𝐱s (7)

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8)

𝐳𝐳m = 0 (9)

Equivalently, the above set of equations may be written as:

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10)

𝐳𝐳m = 0 (11)

In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture, as
shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every
computation stage. Thus, a sequential iterative architecture is
converted into a combinational (pipelined) feed-forward
architecture.

Fig. 1. Sequential CORDIC-based Square architecture

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the
algorithm will require a lot of stages to converge to an
acceptable level of accuracy. This will incur a lot of hardware
costs and a degradation in performance and accuracy. To avoid
this, the input is scaled down such that its value lies in the
range [0,1). This is done by scaling the x vector by 2n. The
new input is thus represented in fixed-point 2’s complement
format as:

𝐱𝐱s
� = 𝐱𝐱n

� . 𝐱𝐱n−1
� 𝐱𝐱n−2

� 𝐱𝐱n−�
� … … 𝐱𝐱1

� 𝐱𝐱0
� (12)

The value of the input is given as:

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore,
determine the accuracy of the final result. We, therefore,
conducted a detailed Pareto analysis to determine the number
of optimal stages that will justify the accuracy-performance
trade-offs. Our analysis considers the 8-bit CORDIC square
architecture. The added advantage of similar inputs in the
squaring operation lowers the permutations that can exist for
the inputs. A total of 256 input combinations exist for an 8-bit
square architecture, and all such combinations are considered
Pareto points. The Pareto analysis focuses on the variation of
error with the number of computation stages. Specifically, we
have used error rate (ER) and mean error distance (MED) to
quantify the error in our computations. ER is defined as the

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

	 (9)
Equivalently, the above set of equations may be written as:

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be
extremely small and may be equated to 0. Therefore, after m
iterations:

𝐳𝐳m = 0

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0

Or

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1

Or

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s

The final equations after m iterations would, therefore, be:

𝐱𝐱m = 𝐱𝐱s (7)

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8)

𝐳𝐳m = 0 (9)

Equivalently, the above set of equations may be written as:

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10)

𝐳𝐳m = 0 (11)

In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture, as
shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every
computation stage. Thus, a sequential iterative architecture is
converted into a combinational (pipelined) feed-forward
architecture.

Fig. 1. Sequential CORDIC-based Square architecture

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the
algorithm will require a lot of stages to converge to an
acceptable level of accuracy. This will incur a lot of hardware
costs and a degradation in performance and accuracy. To avoid
this, the input is scaled down such that its value lies in the
range [0,1). This is done by scaling the x vector by 2n. The
new input is thus represented in fixed-point 2’s complement
format as:

𝐱𝐱s
� = 𝐱𝐱n

� . 𝐱𝐱n−1
� 𝐱𝐱n−2

� 𝐱𝐱n−�
� … … 𝐱𝐱1

� 𝐱𝐱0
� (12)

The value of the input is given as:

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore,
determine the accuracy of the final result. We, therefore,
conducted a detailed Pareto analysis to determine the number
of optimal stages that will justify the accuracy-performance
trade-offs. Our analysis considers the 8-bit CORDIC square
architecture. The added advantage of similar inputs in the
squaring operation lowers the permutations that can exist for
the inputs. A total of 256 input combinations exist for an 8-bit
square architecture, and all such combinations are considered
Pareto points. The Pareto analysis focuses on the variation of
error with the number of computation stages. Specifically, we
have used error rate (ER) and mean error distance (MED) to
quantify the error in our computations. ER is defined as the

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

	
(10)

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be
extremely small and may be equated to 0. Therefore, after m
iterations:

𝐳𝐳m = 0

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0

Or

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1

Or

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s

The final equations after m iterations would, therefore, be:

𝐱𝐱m = 𝐱𝐱s (7)

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8)

𝐳𝐳m = 0 (9)

Equivalently, the above set of equations may be written as:

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10)

𝐳𝐳m = 0 (11)

In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture, as
shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every
computation stage. Thus, a sequential iterative architecture is
converted into a combinational (pipelined) feed-forward
architecture.

Fig. 1. Sequential CORDIC-based Square architecture

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the
algorithm will require a lot of stages to converge to an
acceptable level of accuracy. This will incur a lot of hardware
costs and a degradation in performance and accuracy. To avoid
this, the input is scaled down such that its value lies in the
range [0,1). This is done by scaling the x vector by 2n. The
new input is thus represented in fixed-point 2’s complement
format as:

𝐱𝐱s
� = 𝐱𝐱n

� . 𝐱𝐱n−1
� 𝐱𝐱n−2

� 𝐱𝐱n−�
� … … 𝐱𝐱1

� 𝐱𝐱0
� (12)

The value of the input is given as:

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore,
determine the accuracy of the final result. We, therefore,
conducted a detailed Pareto analysis to determine the number
of optimal stages that will justify the accuracy-performance
trade-offs. Our analysis considers the 8-bit CORDIC square
architecture. The added advantage of similar inputs in the
squaring operation lowers the permutations that can exist for
the inputs. A total of 256 input combinations exist for an 8-bit
square architecture, and all such combinations are considered
Pareto points. The Pareto analysis focuses on the variation of
error with the number of computation stages. Specifically, we
have used error rate (ER) and mean error distance (MED) to
quantify the error in our computations. ER is defined as the

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i	 (11)
In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture,
as shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every compu-
tation stage. Thus, a sequential iterative architecture is convert-
ed into a combinational (pipelined) feed-forward architecture.

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

Fig. 1. Sequential CORDIC-based Square architecture

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the algo-
rithm will require a lot of stages to converge to an acceptable
level of accuracy. This will incur a lot of hardware costs and
a degradation in performance and accuracy. To avoid this, the
input is scaled down such that its value lies in the range [0,1).
This is done by scaling the x vector by 2n. The new input is thus
represented in fixed-point 2’s complement format as:

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be
extremely small and may be equated to 0. Therefore, after m
iterations:

𝐳𝐳m = 0

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0

Or

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1

Or

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s

The final equations after m iterations would, therefore, be:

𝐱𝐱m = 𝐱𝐱s (7)

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8)

𝐳𝐳m = 0 (9)

Equivalently, the above set of equations may be written as:

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10)

𝐳𝐳m = 0 (11)

In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture, as
shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every
computation stage. Thus, a sequential iterative architecture is
converted into a combinational (pipelined) feed-forward
architecture.

Fig. 1. Sequential CORDIC-based Square architecture

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the
algorithm will require a lot of stages to converge to an
acceptable level of accuracy. This will incur a lot of hardware
costs and a degradation in performance and accuracy. To avoid
this, the input is scaled down such that its value lies in the
range [0,1). This is done by scaling the x vector by 2n. The
new input is thus represented in fixed-point 2’s complement
format as:

𝐱𝐱s
� = 𝐱𝐱n

� . 𝐱𝐱n−1
� 𝐱𝐱n−2

� 𝐱𝐱n−�
� … … 𝐱𝐱1

� 𝐱𝐱0
� (12)

The value of the input is given as:

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore,
determine the accuracy of the final result. We, therefore,
conducted a detailed Pareto analysis to determine the number
of optimal stages that will justify the accuracy-performance
trade-offs. Our analysis considers the 8-bit CORDIC square
architecture. The added advantage of similar inputs in the
squaring operation lowers the permutations that can exist for
the inputs. A total of 256 input combinations exist for an 8-bit
square architecture, and all such combinations are considered
Pareto points. The Pareto analysis focuses on the variation of
error with the number of computation stages. Specifically, we
have used error rate (ER) and mean error distance (MED) to
quantify the error in our computations. ER is defined as the

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

	 (12)
The value of the input is given as:

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1

Since the algorithm is being operated in rotation mode after m
iterations, the value of the residual angle (zm) will be
extremely small and may be equated to 0. Therefore, after m
iterations:

𝐳𝐳m = 0

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0

Or

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1

Or

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s

The final equations after m iterations would, therefore, be:

𝐱𝐱m = 𝐱𝐱s (7)

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8)

𝐳𝐳m = 0 (9)

Equivalently, the above set of equations may be written as:

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10)

𝐳𝐳m = 0 (11)

In equation (8), if xs = zs, and ys = 0, then ym will compute the
square of the input xs. A direct mapping of the set of equations
in (5) and (6) will result in an iterative (folded) architecture, as
shown in Fig. 1. The iterative architecture is sequential and
incurs a lot of latency, which is unsuitable for high-speed DSP
applications. The iterative architecture can be unfolded to map
each iteration on a separate computing stage. This results in a
parallel structure, as shown in Fig. 2. The parallel architecture
can be easily pipelined by placing registers after every
computation stage. Thus, a sequential iterative architecture is
converted into a combinational (pipelined) feed-forward
architecture.

Fig. 1. Sequential CORDIC-based Square architecture

Fig. 2. Unfolded CORDIC-based Square architecture

The square architecture of Fig. 2 is based on simple shift
and add operations. For larger magnitude operands, the
algorithm will require a lot of stages to converge to an
acceptable level of accuracy. This will incur a lot of hardware
costs and a degradation in performance and accuracy. To avoid
this, the input is scaled down such that its value lies in the
range [0,1). This is done by scaling the x vector by 2n. The
new input is thus represented in fixed-point 2’s complement
format as:

𝐱𝐱s
� = 𝐱𝐱n

� . 𝐱𝐱n−1
� 𝐱𝐱n−2

� 𝐱𝐱n−�
� … … 𝐱𝐱1

� 𝐱𝐱0
� (12)

The value of the input is given as:

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore,
determine the accuracy of the final result. We, therefore,
conducted a detailed Pareto analysis to determine the number
of optimal stages that will justify the accuracy-performance
trade-offs. Our analysis considers the 8-bit CORDIC square
architecture. The added advantage of similar inputs in the
squaring operation lowers the permutations that can exist for
the inputs. A total of 256 input combinations exist for an 8-bit
square architecture, and all such combinations are considered
Pareto points. The Pareto analysis focuses on the variation of
error with the number of computation stages. Specifically, we
have used error rate (ER) and mean error distance (MED) to
quantify the error in our computations. ER is defined as the

 ̵ /+
 ̵ /+

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+

σ0

 ̵ /+ 2-1

 ̵ /+

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

	 (13)

The result is then obtained by scaling the output from the last
stage by 22n. Note that CORDIC-based computations are only
approximate. The number of iterations will, therefore, deter-
mine the accuracy of the final result. We, therefore, conducted
a detailed Pareto analysis to determine the number of optimal
stages that will justify the accuracy-performance trade-offs.
Our analysis considers the 8-bit CORDIC square architecture.
The added advantage of similar inputs in the squaring operation
lowers the permutations that can exist for the inputs. A total
of 256 input combinations exist for an 8-bit square architec-
ture, and all such combinations are considered Pareto points.
The Pareto analysis focuses on the variation of error with the
number of computation stages. Specifically, we have used error
rate (ER) and mean error distance (MED) to quantify the error

ELECTRONICS, VOL. 29, NO. 2, DECEMBER 202556

in our computations. ER is defined as the percentage of outputs
in error. MED is defined as the average of error distance (ED)
values for a set of input-output samples. Mathematically,

percentage of outputs in error. MED is defined as the average
of error distance (ED) values for a set of input-output samples.
Mathematically,

MED = 1
N

∑ |EDi|N
i=1 (14)

Where N is the number of patterns. The results of the Pareto
analysis are presented in Figs. 3 and 4, where the MED and
ER for all the input combinations are plotted as a function of
the number of CORDIC stages, respectively. A MED of 7.8 is
achieved with a CORDIC square architecture designed in 8
stages; thereafter, any increase in the number of stages does
not result in any significant reduction in MED. In fact, as the

number of stages is further increased, the correctly obtained
outputs are subjected to further computations, thereby
introducing errors in the results. This is evident from Fig. 3,
where the MED slightly increases after 10 stages due to over-
computation of the results. Similarly, an ER of 5% is achieved
with a CORDIC square architecture designed in 8 stages,
which signifies that 95% of results are accurate. Based on the
fixed-point representation of equation (12) and the results
from the Pareto analysis, an illustration of the stage-wise
computations for the CORDIC squarer is presented in Table I.
The modified square structure is shown in Fig. 5.

TABLE I

STAGE-WISE COMPUTATIONS FOR AN 8-BIT CORDIC SQUARE ARCHITECTURE.

Initial Inputs 𝐱𝐱𝐬𝐬 = 011011102

 = 11010
𝐲𝐲𝐬𝐬 = 000000002

 = 010
𝐳𝐳𝐬𝐬 = 011011102

 = 11010
Inputs 𝐱𝐱𝐬𝐬 and
𝐳𝐳𝐬𝐬 scaled down by
28

𝐱𝐱𝐬𝐬
� = 0.011011102

 = 0.429687510
𝐲𝐲𝐬𝐬

� = 0.000000002

 = 0.010
𝐳𝐳𝐬𝐬

� = 0.011011102

 = 0.429687510

1st Stage
𝐱𝐱1 = 𝐱𝐱s

�
𝐲𝐲1 = 𝐲𝐲s

� + σ020𝐱𝐱s
�

𝐳𝐳1 = 𝐳𝐳s
� − σ020

σ0 = sign(𝐳𝐳s
�) = 0(+ive)

𝐱𝐱1 = 0.011011102

 = 0.429687510

𝐲𝐲1 = 0.000000002 + 0.011011102

 = 0.011011102
 = 0.429687510

𝐳𝐳1 = 0.011100012 - 1.000000002

 = 1.011011102
 = - 0.57031310

2nd Stage
𝐱𝐱2 = 𝐱𝐱1
𝐲𝐲2 = 𝐲𝐲1 + σ12−1𝐱𝐱1
𝐳𝐳2 = 𝐳𝐳1 − σ12−1

σ1 = sign(𝐳𝐳1) = 1(−ive)

𝐱𝐱2 = 0.011011102

 = 0.429687510

𝐲𝐲2 = 0.0110111002 - 0.0011011102
 = 0.0011011102
 = 0.2148437510

𝐳𝐳2 = 1.011011102 + 0.100000002
 = 1.111011102
 = - 0.07031310

3rd Stage
𝐱𝐱� = 𝐱𝐱2
𝐲𝐲� = 𝐲𝐲2 + σ22−2𝐱𝐱2
𝐳𝐳� = 𝐳𝐳2 − σ22−2

σ2 = sign(𝐳𝐳𝟐𝟐) = 1(−ive)

𝐱𝐱� = 0.011011102

 = 0.429687510

𝐲𝐲� = 0.00110111002 - 0.00011011102
 = 0.00011011102
 = 0.10742187510

𝐳𝐳� = 1.111011102 + 0.010000002
 = 0.001011012
 = 0.17968710

4th Stage
𝐱𝐱� = 𝐱𝐱�
𝐲𝐲� = 𝐲𝐲� + σ�2−�𝐱𝐱�
𝐳𝐳� = 𝐳𝐳� − σ�2−�

σ� = sign(𝐳𝐳𝟑𝟑) = 0(+ive)

𝐱𝐱� = 0.011011102

 = 0.429687510

𝐲𝐲� = 0.000110111002 + 0.000011011102
 = 0.001010010102
 = 0.161132812510

𝐳𝐳� = 0.001011012 - 0.001000002
 = 0.000011012
 = 0.05468710

5th Stage
𝐱𝐱� = 𝐱𝐱�
𝐲𝐲� = 𝐲𝐲� + σ�2−�𝐱𝐱�
𝐳𝐳� = 𝐳𝐳� − σ�2−�

σ� = sign(𝐳𝐳𝟒𝟒) = 0(+ive)

𝐱𝐱� = 0.011011102

 = 0.429687510

𝐲𝐲� = 0.0010100101002 + 0.0000011011102
 = 0.0011000000102
 = 0.1879882812510

𝐳𝐳� = 0.000011012 - 0.000100002
 = 0.000000102
 = - 0.00781310

6th Stage
𝐱𝐱� = 𝐱𝐱�
𝐲𝐲� = 𝐲𝐲� + σ�2−�𝐱𝐱�
𝐳𝐳� = 𝐳𝐳� − σ�2−�

σ� = sign(𝐳𝐳𝟓𝟓) = 1(−ive)

𝐱𝐱� = 0.011011102

 = 0.429687510

𝐲𝐲� = 0.00110000001002 - 0.00000011011102
 = 0.00101100101102
 = 0.17456054687510

𝐳𝐳� = 0.000000102 + 0.000010002
 = 0.000001012
 = 0.02343710

7th Stage
𝐱𝐱� = 𝐱𝐱�
𝐲𝐲� = 𝐲𝐲� + σ�2−�𝐱𝐱�
𝐳𝐳� = 𝐳𝐳� − σ�2−�

σ� = sign(𝐳𝐳𝟔𝟔) = 0(+ive)

𝐱𝐱� = 0.011011102

 = 0.429687510

𝐲𝐲� = 0.001011001011002 + 0.000000011011102
 = 0.001011100110102
 = 0.181274414062510

𝐳𝐳� = 0.000001012 - 0.000001002
 = 0.000000012
 = 0.00781210

8th Stage
𝐱𝐱� = 𝐱𝐱�
𝐲𝐲� = 𝐲𝐲� + σ�2−�𝐱𝐱�
𝐳𝐳� = 𝐳𝐳� − σ�2−�

σ� = sign(𝐳𝐳𝟕𝟕) = 0(+ive)

𝐱𝐱� = 0.011011102

 = 0.429687510

𝐲𝐲� = 0.0010111001101002 + 0.0000000011011102

 = 0.0010111101000102
 = 0.1846313476562510

𝐳𝐳� = 0.000000012 - 0.000000102

 = 1.111111112
 = - 0.000000510

Multiplier Output after 8 stages (Bit
adjusted and scaled up by 216)

= 000101111010001002

= 1210010

	 (14)

Where N is the number of patterns. The results of the Pareto
analysis are presented in Figs. 3 and 4, where the MED and
ER for all the input combinations are plotted as a function of
the number of CORDIC stages, respectively. A MED of 7.8
is achieved with a CORDIC square architecture designed in 8
stages; thereafter, any increase in the number of stages does not
result in any significant reduction in MED. In fact, as the num-

ber of stages is further increased, the correctly obtained outputs
are subjected to further computations, thereby introducing er-
rors in the results. This is evident from Fig. 3, where the MED
slightly increases after 10 stages due to over-computation of
the results. Similarly, an ER of 5% is achieved with a CORDIC
square architecture designed in 8 stages, which signifies that
95% of results are accurate. Based on the fixed-point represen-
tation of equation (12) and the results from the Pareto analysis,
an illustration of the stage-wise computations for the CORDIC
squarer is presented in Table I. The modified square structure is
shown in Fig. 5.

TABLE I
Stage-wise Computations for an 8-bit CORDIC Square Architecture.

Initial Inputs = 011011102
 = 11010

 = 000000002
 = 010

 = 011011102
 = 11010

Inputs and scaled down by 28 = 0.011011102
 = 0.429687510

 = 0.000000002
 = 0.010

 = 0.011011102
 = 0.429687510

1st Stage

 = 0.011011102
 = 0.429687510

 = 0.000000002 + 0.011011102
 = 0.011011102
 = 0.429687510

 = 0.011100012 - 1.000000002
 = 1.011011102
 = - 0.57031310

2nd Stage

 = 0.011011102
 = 0.429687510

 = 0.0110111002 - 0.0011011102
 = 0.0011011102
 = 0.2148437510

 = 1.011011102 + 0.100000002
 = 1.111011102
 = - 0.07031310

3rd Stage

 = 0.011011102
 = 0.429687510

 = 0.00110111002 - 0.00011011102
 = 0.00011011102
 = 0.10742187510

 = 1.111011102 + 0.010000002
 = 0.001011012
 = 0.17968710

4th Stage

 = 0.011011102
 = 0.429687510

 = 0.000110111002 + 0.000011011102
 = 0.001010010102
 = 0.161132812510

 = 0.001011012 - 0.001000002
 = 0.000011012
 = 0.05468710

5th Stage

 = 0.011011102
 = 0.429687510

 = 0.0010100101002 + 0.0000011011102
 = 0.0011000000102
 = 0.1879882812510

 = 0.000011012 - 0.000100002
 = 0.000000102
 = - 0.00781310

6th Stage

 = 0.011011102
 = 0.429687510

 = 0.00110000001002 - 0.00000011011102
 = 0.00101100101102
 = 0.17456054687510

 = 0.000000102 + 0.000010002
 = 0.000001012
 = 0.02343710

7th Stage

 = 0.011011102
 = 0.429687510

 = 0.001011001011002 + 0.000000011011102
 = 0.001011100110102
 = 0.181274414062510

 = 0.000001012 - 0.000001002
 = 0.000000012
 = 0.00781210

8th Stage

 = 0.011011102
 = 0.429687510

 = 0.0010111001101002 + 0.0000000011011102
 = 0.0010111101000102
 = 0.1846313476562510

 = 0.000000012 - 0.000000102
 = 1.111111112
 = - 0.000000510

Multiplier Output after 8 stages (Bit adjusted and scaled up
by 216)

= 000101111010001002

= 1210010

ELECTRONICS, VOL. 29, NO. 2, DECEMBER 2025 57

2 3 4 5 6 7 8 9 10 11 12 13 14
0

75

150

225

300

375

450

525

600

512.3

234.5

112.4
54.2

25.4 7.8 7.7 7.7 15.3 30.5
62.3

M
E

D

No. of CORDIC Stages

Fig. 3. Variation of MED with the number of computation stages for CORDIC-
based 8-bit Square architecture.

2 3 4 5 6 7 8 9 10 11 12 13 14

-10

0

10

20

30

40

50

60

70

80

90

100
92.3

79.2

67.3

39.7

18.43

4.87 4.77 6.12
14.54

21.43
29.67

E
R

 (%
)

No. of CORDIC Stages

Fig. 4. Variation of ER with the number of computation stages for CORDIC-
based 8-bit Square architecture.

IV. Error Analysis

The accuracy of the proposed architecture is compared
against some approximate multiplier-based square architectures
in terms of MED and normalized mean error distance (NMED).
MED is given by equation (14). NMED is computed from MED
as:

Fig. 3. Variation of MED with the number of computation stages for
CORDIC-based 8-bit Square architecture.

Fig. 4. Variation of ER with the number of computation stages for CORDIC-
based 8-bit Square architecture.

IV. ERROR ANALYSIS

The accuracy of the proposed architecture is compared
against some approximate multiplier-based square
architectures in terms of MED and normalized mean error
distance (NMED). MED is given by equation (14). NMED is
computed from MED as:

NMED = MED
�ma�

 (15)

Where Rmax is the maximum exact result of the computation.
The error metrics are computed using the Vivado 23.1
simulator. The input patterns are provided as an input text file,
and the calculated output of different approximate designs is
also written to a separate text file. The computed outputs are
then compared to the exact outputs for each pattern, and ED
for each pattern is calculated. MED is then computed as the
average of EDs. Table II provides a comparison of different 8-
bit square architectures. It is observed that the CORDIC-based
square architecture has the least MED and NMED among the
various designs.

Fig. 5. CORDIC-based Square architecture with scaled inputs

TABLE II
ACCURACY ANALYSIS OF DIFFERENT SQUARE ARCHITECTURES FOR 8-BIT

OPERANDS
Design MED NMED

[11] 21.8 0.00034
MCom 4:2 [12] 204.1 0.00314
MFA1 [12] 67.45 0.00104
MFA2 [12] 45.12 0.0007
[13] 137.3 0.0021
Normal [14] 16.4 0.00025
Hybrid [14] 11.3 0.00017
MUL1 [15] 121.32 0.00186
MUL2 [15] 115.7 0.00178
RRAM-I [16] 72.8 0.00112
RRAM-II [16] 9.32 0.00014
Proposed 7.8 0.00012

2 3 4 5 6 7 8 9 10 11 12 13 14
0

75

150

225

300

375

450

525

600

512.3

234.5

112.4

54.2
25.4 7.8 7.7 7.7 15.3 30.5

62.3

M
ED

No. of CORDIC Stages

2 3 4 5 6 7 8 9 10 11 12 13 14

-10

0

10

20

30

40

50

60

70

80

90

100
92.3

79.2

67.3

39.7

18.43

4.87 4.77 6.12
14.54

21.43
29.67E

R
 (%

)

No. of CORDIC Stages

ym

<<16
16

xs

>>8

8

 ̵ /+

20

9

 ̵ /+

ys = 0

99

>>1

 ̵ /+

2-1
9

 ̵ /+

10109

REG REG

>>2

 ̵ /+

2-2
9

 ̵ /+

11119

REG REG

>>6

 ̵ /+

2-6
9

 ̵ /+

15159

>>7

 ̵ /+

2-7
9

 ̵ /+

16169

REG REG

REG REG

16

Stage 1

Stage 2

Stage 3

Stage 7

Stage 8

	
(15)

Where Rmax is the maximum exact result of the computation.
The error metrics are computed using the Vivado 23.1 simu-
lator. The input patterns are provided as an input text file, and
the calculated output of different approximate designs is also
written to a separate text file. The computed outputs are then
compared to the exact outputs for each pattern, and ED for each
pattern is calculated. MED is then computed as the average of
EDs. Table II provides a comparison of different 8-bit square
architectures. It is observed that the CORDIC-based square ar-
chitecture has the least MED and NMED among the various
designs.

ym

<<16
16

xs

>>8

8

 ̵ /+

20

9

 ̵ /+

ys = 0

99

>>1

 ̵ /+

2-1
9

 ̵ /+

10109

REG REG

>>2

 ̵ /+

2-2
9

 ̵ /+

11119

REG REG

>>6
 ̵ /+

2-6
9

 ̵ /+
15159

>>7

 ̵ /+

2-7
9

 ̵ /+

16169

REG REG

REG REG

16

Stage 1

Stage 2

Stage 3

Stage 7

Stage 8

Fig. 5. CORDIC-based Square architecture with scaled inputs

TABLE II
Accuracy Analysis of Different Square Architectures for 8-bit Oper-

ands
Design MED NMED

[11] 21.8 0.00034
MCom 4:2 [12] 204.1 0.00314
MFA1 [12] 67.45 0.00104
MFA2 [12] 45.12 0.0007
[13] 137.3 0.0021
Normal [14] 16.4 0.00025
Hybrid [14] 11.3 0.00017
MUL1 [15] 121.32 0.00186
MUL2 [15] 115.7 0.00178
RRAM-I [16] 72.8 0.00112
RRAM-II [16] 9.32 0.00014
Proposed 7.8 0.00012

ELECTRONICS, VOL. 29, NO. 2, DECEMBER 202558

V. Synthesis & Implementation

The proposed square architecture is implemented both on
ASIC and FPGA platforms. The ASIC implementation is based
on the TSMC 180 nm CMOS technology using the Synopsys
design tool. The simulations are conducted at an operating volt-
age of 1.8 V with an operating temperature of 25º C and a target
clock frequency of 100 MHz. The area, critical path delay, and
dynamic power dissipation are reported for each design. For
FPGA implementation, the architecture in Fig. 5 is coded using
VHDL and implemented using Xilinx Vivado 23.1, targeting
the 7th generation xc7k325tffg900c FPGA device from the Kin-
tex-7 family. The analysis involves resources, timing, and dy-
namic power dissipation as parameters of interest. Implemen-
tation is done under a constrained environment for both ASIC
and FPGA platforms, with both physical and timing constraints
being duly provided to emulate the actual operating condi-
tions. The metrics are reported after the complete placement
and routing of the design. Table III compares the performance
of the proposed square architecture against different exact and
approximate square architectures reported in the literature. The
analysis is done for an operand word length of eight bits. The
analysis reveals that the CORDIC-based square architecture
shows an improved performance when compared to the exist-
ing exact and approximate designs. For ASIC implementation,
a few designs report slightly better metrics than our proposed
architecture. However, our design reports the best metrics for

FPGA platforms, with only MUL1-based square architecture
reported in [15] showing reduced LUT count and dynamic
power dissipation. However, the square architecture based on
the MUL1 design is a serial architecture and has an extremely
large critical path delay. To get a better perspective of the per-
formance improvement, Table IV shows the power-delay-area
product (PDAP) for different designs on ASIC and FPGA plat-
forms. Our design reports a 25% and 38% improvement over
the next best design for ASIC and FPGA platforms, respective-
ly. Due to the rigorous pipelining, our design implementation
requires more registers than the other reported. However, each
logic slice in Kintex-7 FPGAs supports eight flip-flop registers;
thus, using these registers does not incur any extra hardware
cost. Including these registers in the implementation process
considerably reduces the critical paths. This has two advan-
tages; first, the structure can be clocked at higher frequencies,
enhancing speed and throughput. Second, the capacitances to
be charged and discharged in a single clock cycle are reduced,
reducing dynamic power dissipation. Further analysis focuses
on the achievable accuracy versus performance trade-offs using
the proposed square architecture. This is shown in Figs. 6 and
7, where power-delay-product (PDP) and resource usage are
plotted against the NMED for different exact and approximate
square architectures for FPGA and ASIC platforms, respective-
ly. For a given NMED, our proposed square architecture has
the least PDP and utilizes the least resources. Similar results are
reflected in Figs. 8 and 9, plotting PDAP against the NMED for

TABLE III
Performance Analysis of Different 8-bit Square Architectures on ASIC and FPGA Platforms

Design
ASIC (180 nm CMOS) FPGA (xc7k325tffg900c)

Area (µm2) Delay (ns) Power (mW) LUT Delay (ns) Power (mW)

Accurate

[05] 1910.32 2.34 0.062 56 4.879 28.2

[20] 2115.44 2.65 0.067 62 8.6 29

[23] 1978.96 2.44 0.062 58 5.6 29

[24] 4503.84 2.98 0.075 132 9.8 28.2

[25] 3616.72 2.71 0.071 106 9.4 28.2

[26] 3343.76 2.66 0.071 98 8.9 20

[27] 2653.21 2.93 0.069 68 9.11 21

Approximate

[11] 3421.12 1.612 0.066 59 4.1 21.33

MCom 4:2 [12] 2114.32 1.495 0.052 48 3.4 23.43

MFA1 [12] 3461.65 1.567 0.063 64 4.02 21.88

MFA2 [12] 4094.22 1.588 0.071 66 4.44 22.11

[13] 2312.16 1.441 0.0591 52 3.33 20.67

Normal [14] 2117.65 1.431 0.0583 50 3.76 21.56

Hybrid [14] 2216.71 1.442 0.0586 52 3.81 21.6

MUL1 [15] 1412.32 3.112 0.0411 32 7.8 18.75

MUL2 [15] 1721.11 3.211 0.0431 39 8.01 18.89

RRAM-I [16] 2410.61 1.621 0.056 53 3.01 20.87

RRAM-II [16] 2441.11 1.562 0.0552 54 3.334 20.81

Proposed 1522.01 1.44 0.0561 36 2.929 19.43

ELECTRONICS, VOL. 29, NO. 2, DECEMBER 2025 59

different exact and approximate square architectures for FPGA
and ASIC platforms, respectively.

The proposed square architecture is also tested by using it to
increase the intensity of the output pixels in an image edge-de-
tection application, thereby leading to better contrast enhance-
ment. Edge detection is performed by applying Gaussian noise
filtering followed by horizontal and vertical filters to detect the
edges. The proposed square architecture is then used to improve
the contrast of the final filtered image by multiplying it with
itself. The quality of the output image is reported in terms of
the peak signal-to-noise ratio (PSNR) calculated with respect to
the image obtained using the exact square architecture. Fig. 10
shows the output images obtained using different square archi-
tectures. Our proposed square architectures report an improve-
ment of 20% in PSNR over the next best architecture.

TABLE IV
PDAP Analysis of Different 8-bit Square Architectures on ASIC and

FPGA Platforms

Design ASIC (180 nm CMOS) FPGA (xc7k325tffg900c)

PDAP (fJm2) PDAP (nJA)

[05] 0.277149 7.704917

[20] 0.375596 15.4628

[23] 0.299377 9.4192

[24] 1.006608 36.47952

[25] 0.695893 28.09848

[26] 0.631503 17.444

[27] 0.5363 13.009

[11] 0.36398 5.159727

MCom 4:2 [12] 0.164367 3.823776

MFA1 [12] 0.341738 5.629286

MFA2 [12] 0.461615 6.479114

[13] 0.196911 3.579217

Normal [14] 0.17667 4.05328

Hybrid [14] 0.187315 4.279392

MUL1 [15] 0.18064 4.68

MUL2 [15] 0.238191 5.901047

RRAM-I [16] 0.218826 3.329391

RRAM-II [16] 0.210478 3.746549

Proposed 0.122954 2.048777

Fig. 6. PDP-LUT-NMED plot for different Square architectures implemented
on the FPGA platform.

Fig. 7. PDP-AREA-NMED plot for different Square architectures implemented
on the ASIC platform.

V. CONCLUSION

In this paper, we propose a square architecture based on
the operation of the CORDIC algorithm in a linear coordinate
system. While CORDIC has frequently been used in literature
to evaluate different trigonometric and transcendental func-
tions, it is very rarely used to evaluate linear functions. Being
hardware-efficient, the computations are simple, enabling the
inherent algorithm to be translated into diverse architectures
to suit the application demands. In this paper, we focussed on
unfolded (pipelined) architectures. Our analysis with ASIC
and 7th-generation FPGAs reported a substantial performance
improvement evaluated in terms of PDAP. Further, the accura-
cy-performance trade-offs achievable with our proposed square
architecture outperform all the existing approximate multipli-
er-based square architectures. Heuristically, the convergence of
the architecture shares a linear relationship with the operand
word length. For large operand word-lengths, therefore, there
will be an exponential increase in the resource utilized. Our fu-
ture endeavors will focus on speeding up the convergence of
the computations through the use of radix-4 arithmetic. This
will reduce the number of iterative stages, resulting in lesser
LUT utilization.

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
0

5000

10000

15000

20000

25000

30000

35000

40000

 Exact
 [11]
 [12]
 [13]
 [14]
 [15]
 [16]
 Proposed

PD
A

P

NMED

Fig. 8. PDAP-NMED plot for different Square architectures implemented on
the FPGA platform.

ELECTRONICS, VOL. 29, NO. 2, DECEMBER 202560

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
0

150

300

450

600

750

900

1050

1200

 Exact
 [11]
 [12]
 [13]
 [14]
 [15]
 [16]
 Proposed

PD
A

P

NMED

Fig. 9. PDAP-NMED plot for different Square architectures implemented on
the ASIC platform.

Fig. 10. Contrast enhancement using different square architectures for an edge-
detection application.

References

[1]	 P. Jebashini, R. Uma, P. Dhavachelvan and H. K. Wye, “A Survey and
Comparative Analysis of Multiply-Accumulate (MAC) block for Digital
Signal Processing Application on ASIC and FPGA,” Journal of Applied
Sciences, July 2015; 15(7): 934-946, doi:10.3923/jas.2015.934.946.

[2]	 A. Deepa and C. N. Marimuthu, “A High Speed VLSI Architecture of a
Pipelined Reed Solomon Encoder for Data Storage in Communication
Systems,” Asian Journal of Research in Social Sciences and Humanities,
Feb. 2017; 7(2): 228–238, doi:10.5958/2249-7315.2017.00085.5.

[3]	 J. Pihl and E. J. Aas, “A multiplier and squarer generator for high-perfor-
mance DSP applications,” in Proceedings of the 39th Midwest Symposium
on Circuits and Systems, Ames, IA, USA, 1996, pp. 109-112, doi:10.1109/
MWSCAS.1996.594049.

[4]	 M. Kaveh, M. Khishe and M. R. Mosavi, “Design and implementation
of a neighborhood search biogeography-based optimization trainer for
classifying sonar dataset using multi-layer perceptron neural network,”
Analog Integrated Circuits and Signal Processing Nov. 2018; 100: 405-
428, doi: 10.1007/s10470-018-1366-3.

[5]	 J. Bajaj and B. Jajodia, “Efficient Hardware Implementation of High-
Speed Recursive Vedic Squaring Architecture on FPGA,” in Proceedings
of the International Conference on Electrical, Computer and Energy
Technologies (ICECET), Cape Town, South Africa, Dec. 2021, pp. 1-6,
doi:10.1109/ICECET52533.2021.9698774.

[6]	 A. Deepa and C. N. Marimuthu, “Design of a high speed Vedic multipli-
er and square architecture based on Yavadunam Sutra.” Sadhana, Indian
Academy of Sciences Aug. 2019; 44:197: 1–10, doi:0.1007/s12046-019-
1180-3.

[7]	 P. J. Edavoor, S. Raveendran and A. D. Rahulkar, “Approximate Multipli-
er Design using Novel Dual-Stage 4:2 Compressors,” IEEE Access, Mar.
2020; 8: 48337-51, doi: 10.1109/ACCESS.2020.2978773.

[8]	 S. Asif and Y. Kong, “Design of an Algorithmic Wallace Multipli-

er using High-Speed Counters,” in Proc. 10th Int. Conf. Comput. Eng.
Syst. (ICCES), Cairo, Egypt; Dec. 2015, pp. 133-138, doi: 10.1109/
ICCES.2015.7393033.

[9]	 W. J. Townsend, E. E. Swartzlander and J. A. Abraham, “A Comparison
of Dadda and Wallace Multiplier Delays,” in Proc. SPIE Annual meeting
Opt. Sci. Technol., San Diego, CA, USA, Dec. 2003, pp. 552-560, doi:
10.1117/12.507012.

[10]	 H. Xiao, H. Xu, X. Chen, Y. Wang, Y. Han, “Fast and high-accuracy
approximate MAC unit design for CNN computing,” IEEE Embed-
ded Systems Letters 14 (3) September 2022 155–158, doi: 10.1109/
LES.2021.3137335.

[11]	 T. Yang, T. Ukezono, T. Sato, “Low-power and high-speed approximate
multiplier design with a tree compressor,” in: Proceedings of the 35th In-
ternational Conference on Computer Design (ICCD), Boston, MA, USA,
November 2017, pp. 89–96, doi:10.1109/ICCD.2017.22.

[12]	 B. Rashidi, “Efficient and low-cost approximate multipliers for image
processing,” Integration, the VLSI Journal Jan. 24; 94(102084), pp. 1-13,
doi: 10.1016/j.vlsi.2023.102084.

[13]	 S. K. Beura, B. P. Devi, P. K. Saha and P. K. Meher, “Design of a Novel
Inexact 4:2 Compressor and Its Placement in the Partial Product Array
for Area, Delay, and Power-Efficient Approximate Multipliers,” Circuits,
Systems, and Signal Processing March 2024 43: 3748-3774, doi: 10.1007/
s00034-024-02630-4.

[14]	 M. Zhang, S. Nishizawa and S. Kimura, “Area Efficient Approximate
4-2 Compressor and Probability-Based Error Adjustment for Approxi-
mate Multiplier,” IEEE Transactions on Circuits and Systems-II: Express
Briefs, Vol. 70, No. 5, May 2023, doi: 10.1109/TCSII.2023.3257852.

[15]	 L. Sayadi, S. Timarachi, A.S. Akbari, Two efficient approximate unsigned
multipliers by developing new configuration for approximate 4:2 com-
pressors, IEEE Transactions on Circuits and Systems-I Feb 70 (4) (2023)
1649–1659, doi: 10.1109/TCSI.2023.3242558.

[16]	 V. Tammineni, S. K. Beura, M. V. H. B. Murthy, S. Majumdar and P. Saha,
“Optimized recursive approximate multipliers for edge detection and im-
age smoothing applications,” Microsystem Technologies, Nov. 2024, doi:
10.1007/s00542-024-05810-z.

[17]	 T. Matsunaga, S. Kimura and Y. Matsunaga, “Multi-Operand Adder Syn-
thesis on FPGAs using Generallized Parallel Counters,” in Proc. of 15th
Asia and South Pacific Design Automation Conference (ASP-DAC), Taipei,
Taiwan, Jan 2010, pp. 337-342, doi: 10.1109/ASPDAC.2010.5419871.

[18]	 H. P. Afshar, P. Brisk and P. Ienne, “Efficient Synthesis of Compressor
Trees on FPGAs,” in Proc. of 2008 Asia and South Pacific Design Au-
tomation Conference, Seoul, South Korea, Mar. 2008, pp. 138-143, doi:
10.1109/ASPDAC.2008.4483927.

[19]	 H. P. Afshar, A. Neogy, P. Brisk and P. Ienne, “Compressor Tree Syn-
thesis on Commercial High-Performance FPGAs,” ACM Transactions
on Reconfigurable Technology and Systems, Dec. 2011; 4(4): 1-19, doi:
10.1145/2068716.2068725.

[20]	 B. N. K. Reddy, “Design and implementation of high performance and
area efficient square architecture using Vedic Mathematics,” Analog In-
tegrated Circuits and Signal Processing, July 2019; 102: 501-506, doi:
10.1007/s10470-019-01496-w.

[21]	 P. Saritha, J. Vinitha, S. Sravya, V. Vijay and E. Mahesh, “4-Bit Vedic
Multiplier with 18 nm FinFET Technology,” in Proceedings of the In-
ternational Conference on Electronics and Sustainable Communication
System (ICESC), Coimbatore, India, 2020, pp. 1079-84, doi: 10.1109/IC-
ESC48915.2020.9155707.

[22]	 V. Bianchi V and I. D. Munari, “A modular Vedic multiplier architecture
for model-based design and deployment on FPGA platforms,” Micropro-
cessors and Microsystems, July 2020; 76: 103106: 1-9, doi: 10.1016/j.
micpro.2020.103106.

[23]	 S. Shetkar and S. Kohli, “Squaring Circuit Using 14nmFinFET Technol-
ogy with Vedic Mathematics Approach.” IETE Journal of Research, May
2024, 1-9, doi: 10.1080/03772063.2024.2355662.

[24]	 P. S. Kasliwal, B. P. Patil and D. K. Gautam, “Performance evaluation of
squaring operation by Vedic Mathematics,” IETE Journal of Research,
2011; 57(1), 39-41, doi: 10.4103/0377-2063.78327.

[25]	 H. Thapliyal, S. Kotiyal and M. B. Srinivas, “Design and analysis of a
novel parallel square and cube architecture based on ancient Indian Ve-
dic Mathematics” in Proceedings of 48th Midwest Symposium on Cir-
cuits and Systems, Covington, KY, USA, Aug. 2005, pp. 1462–1465, doi:
10.1109/MWSCAS.2005.1594388.

ELECTRONICS, VOL. 29, NO. 2, DECEMBER 2025 61

[26]	 D. K. Yadav and R. R. Lal, “Analysis of Vedic Mathematics Ekadhike-
na Purvena Sutra in Squaring and Multiplication,” in 8th Internation-
al Conference on Communication and Electronics Systems (ICCES
2023), Coimbatore, India, June 2023, pp. 12–19, doi: 10.1109/
ICCES57224.2023.10192851.

[27]	 J. Sravana, K. S. Indrani, S. Mahurkar, M. Pranathi, D. R. Reddy and V.
Vallabhuni, “Optimized VLSI Design of Squaring Multiplier Using Ya-
vadunam Sutra Through Deficiency Bits Reduction,” Advances in Signal
Processing and Communication Engineering. Lecture Notes in Electri-
cal Engineering, vol 929: 387-399. Springer, Singapore, Dec. 2022, doi:
10.1007/978-981-19-5550-1_36.

[28]	 B. Khurshid and J. J. Khan, “An Efficient Fixed-Point Multiplier based on
CORDIC Algorithm,” Journal of Circuits, Systems and Computers, 2021;
30(05): 1-19, doi: 10.1142/S0218126621500808.

[29]	 J. S. Walther, “A Unified Algorithm for Elementary Functions,” in Pro-
ceedings of the AFIPS Spring Joint Computer Conference, New York,
USA, May 1971, pp. 379-385, doi: 10.1145/1478786.1478840.

[30]	 J. S. Walther, “The story of Unified CORDIC,” Journal of VLSI Signal

Processing systems for signal, image and video technology, June 2000;
25(2): 107-112, doi: 10.1023/A:1008162721424.

[31]	 P. K. Meher, J. Valls, T. B. Juang and K. Sridhavan, “50 years of COR-
DIC: Algorithms, Architectures and Applications,” IEEE Transac-
tions on Circuits and Systems-I, 2009; 56(9): 1893-1907, doi: 10.1109/
TCSI.2009.2025803.

[32]	 B. Lakshmi and A. Dhar, “CORDIC Architectures: A Survey,” VLSI De-
sign, 2010; 794891: 1-19, doi: 10.1155/2010/794891.

[33]	 S. M. Mohamed, W. S Sayed, A. G. Radwan and L. A. Said, “FPGA Im-
plementation of Reconfigurable CORDIC Algorithm and a Memristive
Chaotic System with Transcendental Non-Linearities,” IEEE Transac-
tions on Circuits and Systems-I, Regular paper, July 2022; 69(7): 2885-92,
doi: 10.1109/TCSI.2022.3165469.

[34]	 G. Raut, S. Rai, S. K. Vishvakarma and A. Kumar, “RECON: Re-
source-Efficient CORDIC-based Neuron Architecture,” IEEE Open
Journal of Circuits and Systems, Jan 2021; 2: 170-181, doi: 10.1109/OJ-
CAS.2020.3042743.

