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Abstract—Hardware-intensive signal processing has seen tre-
mendous growth over the last few decades, owing to the advances 
in VLSI technology. This has resulted in a significant paradigm 
shift, wherein different computational functionalities are increas-
ingly implemented using different hardware platforms. The squar-
ing function is one such operation that finds its application in many 
signal-processing tasks. Since squaring is a specific case of multi-
plication, traditional multiplication algorithms can be adapted to 
create high-performance squaring architectures. In this paper, we 
present a squaring architecture that is based on the CORDIC algo-
rithm. The hardware efficiency of the CORDIC algorithm enables 
it to compute different mathematical functions using only shift and 
add operations. By operating the algorithm in linear mode, the 
CORDIC computations can be modeled to emulate the squaring 
function. Our 8-bit CORDIC-based squaring architecture shows a 
25% and 38% reduction in PDAP over the existing best design for 
ASIC and FPGA platforms, respectively.

Index Terms— CORDIC algorithm, DSP, Fixed-point arithme-
tic, Pipelining, Vedic Mathematics.
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I. Introduction

Multiplication based functions like Multiply-Add (MAD), 
Multiply-Accumulate (MAC), Convolution, etc., form 

the core of many digital signal processing (DSP) applications 
[1], [2]. Image Processing, Neural Networks, Audio-Video Pro-
cessing, and Machine Learning are a few of the many areas that 
have multiplication-inspired computations as an integral part of 
their functionality. The squaring function is one such operation 
that finds its application in many signal-processing tasks [3], 
[4]. The squaring operation can be seen as a specific instance 
of multiplication where the multiplicand and multiplier have 
the same value [5]. Evidently, most of the existing work related 
to squaring architectures is actually based on the optimization 
of the multiplication operation for the specific case of identi-
cal operands [6]. The performance bottleneck for a multiplier 
unit is typically limited by the partial product reduction (PPR) 
stage [7]. Traditionally, Wallace and Dadda trees have been 

used to reduce the partial product matrix (PPM) [8], [9]. Nu-
merous modifications to these approaches have been proposed. 
Prominent among them are the approximation techniques that 
focus on designing compressors that reduce the complexity of 
the PPR stage. A 4:2 compressor-based multiplier based on the 
correlation of input data is presented in [10].

Approximate compressor trees with reduced accumulation 
layers are presented in [11], [12]. An approximate multiplier 
based on an inexact 4:2 compressor that shares the logic required 
for sum and carry is presented in [13]. Similarly, 4:2 compres-
sor-based multipliers based on a constant approximation and 
probability-based error correction are presented in [14], [15]. 
Recursive approximate multipliers based on the divide and 
conquer strategy are presented in [16]. These show substantial 
improvements in error metrics when compared to traditional 
compressor-based multipliers. For field programmable gate ar-
ray (FPGA) based designs, generalized parallel counters (GPC) 
are used to construct the compressor tress [17]-[19]. These map 
well on FPGAs and are often used to replace traditional Wallace 
and Dadda trees. However, given that squaring is a specific type 
of multiplication where both operands are identical, the number 
of partial products generated is generally fewer [5]. This reduc-
es the computational complexity of the PPR stage. Evidently, a 
squaring architecture is often much faster and consumes fewer 
resources compared to an equivalent multiplier [20].

Recently, Vedic mathematics has been used to improve the 
performance of multiplier architectures in general [21], [22] 
and squaring architectures in specific [5], [6], [20], [23], [24]. 
In [23], a squaring architecture based on the duplex property of 
Dwandwayoga sutra is proposed and implemented using 14nm 
FinFET technology. A squaring architecture based on the Urd-
hva Tiryagbhyam sutra from Vedic mathematics is proposed in 
[24]. The concept is further modulated in [5], wherein the au-
thors use a combination of Urdhva Tiryagbhyam sutra and Kar-
atsuba-Ofman algorithm to design a recursive squaring archi-
tecture. In [20], the authors present a square architecture based 
on the Anurupye sutra of Vedic mathematics. The architecture 
is implemented on Kintex-7 FPGA and reports a subsequent 
improvement in performance over some earlier Vedic-based de-
signs [24], [25]. However, it fails to match the performance of 
the design reported in [5]. The authors in [26] report a squaring 
architecture based on the Ekadhikena Purvena sutra of Vedic 
mathematics. The resulting structure is multiplier-less but fails 
to match the performance of designs in [5] and [20]. Similar 
squaring architectures based on the Yavadunam sutra of Vedic 
mathematics are reported in [6], [27].
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This paper proposes a novel approximate squaring archi-
tecture based on the CORDIC algorithm. In the past, COR-
DIC-based computations have been employed to calculate 
various trigonometric and non-linear transcendental functions. 
We operate the CORDIC algorithm in linear mode and modify 
the computations to evaluate the squaring operation. We also 
conduct a Pareto analysis for an 8-bit CORDIC-based squaring 
architecture to determine the optimum number of stages that 
justify the accuracy-performance trade-offs for the proposed 
architecture. 

The paper proceeds with the following structure: Section II 
briefly discusses the basics of the CORDIC algorithm. Squar-
ing architecture based on CORDIC is presented in Section III. 
Error analysis is done in Section IV. Synthesis, implementation, 
and performance comparison are carried out in Section V. Sec-
tion VI concludes the paper and points out any scope for future 
work. References are listed at the end.

II. Cordic Algorithm

CORDIC stands for Coordinate Rotation Digital Computer. 
The algorithm iteratively rotates a vector through arbitrary an-
gles within linear or non-linear coordinate systems [28]-[30]. 
The basic rotation equations are given as [31]:
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(x0, y0) are the starting coordinates of the vector, and (xm, ym) 
are the final coordinates of the vector. Since its induction, 
different algorithm modifications have been proposed to 
enable the algorithm to calculate a wider range of 
mathematical functions [32]. The basic operating modes of the 
algorithm are the rotation and the vectoring mode. While the 
former is characterized by the reduction of the value of the 
residual angle with every iteration [33], the latter performs a 
finite number of micro-rotations to compute the angle that 
aligns the final vector parallel to the x-axis. A single set of 
iterative unified CORDIC equations that encapsulate both 
modes is given as [34]: 

�
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𝐳𝐳i+1 = �
𝐳𝐳i − 𝛔𝛔i tanh−1(2−i) , μ = −1

𝐳𝐳i − 𝛔𝛔i(2−i), μ = 0   
𝐳𝐳i − 𝛔𝛔i tan−1(2−i) , μ = 1  

 (3) 

Where µ = -1, 0, and 1 for hyperbolic, linear, and circular 
coordinates, respectively. 

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode 

i and n represent the current and the total number of iterations, 
respectively. The rotations are pseudo rotations and tend to 
increase the length of the rotating vector with every iteration. 
The gain factor ki is, therefore, used to maintain the original 
length of the rotating vector. ki is calculated as: 

𝐤𝐤i = ∏ �1 + μ2−2in−1
i=0  (4) 

III. PROPOSED SQUARING ARCHITECTURE 
CORDIC computations can be modeled to emulate the 

squaring operation by performing rotations in a linear 
coordinate system. From equations (2) and (3), we have: 
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𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i] 

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i 

For a linear coordinate system, µ = 0. The value of the gain 
factor ki will, therefore, be unity. The above equations will be 
modified as: 

𝐱𝐱i+1 = 𝐱𝐱i 
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𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6) 

The above equations are iterative. Note that depending upon 
the direction of rotation σi may be either +1 or -1. If the initial 
values of x, y, and z vectors are xs, ys, and zs, respectively, 
then the equations after the first iteration (i = 0) would be: 

𝐱𝐱1 = 𝐱𝐱s 

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s 

𝐳𝐳1 = 𝐳𝐳s ∓ 1 

After second iteration (i = 1): 

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s 

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1 

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s 

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1 

= 𝐳𝐳s ∓ 1 ∓ 2−1 

After third iteration (i = 2): 

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s 

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2 

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s 

𝐳𝐳� = 𝐳𝐳2 ∓ 2−2 

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 

After m iterations: 

𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s 

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1 

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s ± ⋯ ± 2−m+1𝐱𝐱s 

= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1] 

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1 
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𝐤𝐤i = ∏ �1 + μ2−2in−1
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III. PROPOSED SQUARING ARCHITECTURE 
CORDIC computations can be modeled to emulate the 

squaring operation by performing rotations in a linear 
coordinate system. From equations (2) and (3), we have: 

𝐱𝐱i+1 = 𝐤𝐤i[𝐱𝐱i − μ𝛔𝛔i2−i𝐲𝐲i] 

𝐲𝐲i+1 = 𝐤𝐤i[𝛔𝛔i2−i𝐱𝐱i + 𝐲𝐲i] 

𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i 

For a linear coordinate system, µ = 0. The value of the gain 
factor ki will, therefore, be unity. The above equations will be 
modified as: 

𝐱𝐱i+1 = 𝐱𝐱i 

𝐲𝐲i+1 = 𝐲𝐲i + 𝛔𝛔i2−i𝐱𝐱i 
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𝐳𝐳i+1 = 𝐳𝐳i − 𝛔𝛔i2−i (6) 

The above equations are iterative. Note that depending upon 
the direction of rotation σi may be either +1 or -1. If the initial 
values of x, y, and z vectors are xs, ys, and zs, respectively, 
then the equations after the first iteration (i = 0) would be: 

𝐱𝐱1 = 𝐱𝐱s 

𝐲𝐲1 = 𝐲𝐲s ± 𝐱𝐱s 

𝐳𝐳1 = 𝐳𝐳s ∓ 1 

After second iteration (i = 1): 

𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s 

𝐲𝐲2 = 𝐲𝐲1 ± 2−1𝐱𝐱1 

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s 

𝐳𝐳2 = 𝐳𝐳1 ∓ 2−1 

= 𝐳𝐳s ∓ 1 ∓ 2−1 

After third iteration (i = 2): 

𝐱𝐱� = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s 

𝐲𝐲� = 𝐲𝐲2 ± 2−2𝐱𝐱2 

= 𝐲𝐲s ± 𝐱𝐱s ± 2−1𝐱𝐱s ± 2−2𝐱𝐱s 
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𝐱𝐱m = 𝐱𝐱m−1 … = 𝐱𝐱2 = 𝐱𝐱1 = 𝐱𝐱s 

𝐲𝐲m = 𝐲𝐲m−1 ± 2−m+1𝐱𝐱m−1 
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= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1] 

𝐳𝐳m = 𝐳𝐳m−1 ∓ 2−m+1 

After third iteration (i = 2):

operation. We also conduct a Pareto analysis for an 8-bit 
CORDIC-based squaring architecture to determine the 
optimum number of stages that justify the accuracy-
performance trade-offs for the proposed architecture.  

The paper proceeds with the following structure: Section II 
briefly discusses the basics of the CORDIC algorithm. 
Squaring architecture based on CORDIC is presented in 
Section III. Error analysis is done in Section IV. Synthesis, 
implementation, and performance comparison are carried out 
in Section V. Section VI concludes the paper and points out 
any scope for future work. References are listed at the end. 

II. CORDIC ALGORITHM 
CORDIC stands for Coordinate Rotation Digital Computer. 

The algorithm iteratively rotates a vector through arbitrary 
angles within linear or non-linear coordinate systems [28]-
[30]. The basic rotation equations are given as [31]: 
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(x0, y0) are the starting coordinates of the vector, and (xm, ym) 
are the final coordinates of the vector. Since its induction, 
different algorithm modifications have been proposed to 
enable the algorithm to calculate a wider range of 
mathematical functions [32]. The basic operating modes of the 
algorithm are the rotation and the vectoring mode. While the 
former is characterized by the reduction of the value of the 
residual angle with every iteration [33], the latter performs a 
finite number of micro-rotations to compute the angle that 
aligns the final vector parallel to the x-axis. A single set of 
iterative unified CORDIC equations that encapsulate both 
modes is given as [34]: 
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Where µ = -1, 0, and 1 for hyperbolic, linear, and circular 
coordinates, respectively. 

𝛔𝛔i = sign(𝐳𝐳i), for rotation mode
−sign(𝐲𝐲i), for vectoring mode 

i and n represent the current and the total number of iterations, 
respectively. The rotations are pseudo rotations and tend to 
increase the length of the rotating vector with every iteration. 
The gain factor ki is, therefore, used to maintain the original 
length of the rotating vector. ki is calculated as: 
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The above equations are iterative. Note that depending upon 
the direction of rotation σi may be either +1 or -1. If the initial 
values of x, y, and z vectors are xs, ys, and zs, respectively, 
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= 𝐲𝐲s ± 𝐱𝐱s[1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1] 
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= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 

Since the algorithm is being operated in rotation mode after m 
iterations, the value of the residual angle (zm) will be 
extremely small and may be equated to 0. Therefore, after m 
iterations: 

𝐳𝐳m = 0 

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0 

Or 

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1 

Or 

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s 

The final equations after m iterations would, therefore, be: 

𝐱𝐱m = 𝐱𝐱s (7) 

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8) 

𝐳𝐳m = 0 (9) 

Equivalently, the above set of equations may be written as: 

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10) 

𝐳𝐳m = 0 (11) 

In equation (8), if xs = zs, and ys = 0, then ym will compute the 
square of the input xs. A direct mapping of the set of equations 
in (5) and (6) will result in an iterative (folded) architecture, as 
shown in Fig. 1. The iterative architecture is sequential and 
incurs a lot of latency, which is unsuitable for high-speed DSP 
applications. The iterative architecture can be unfolded to map 
each iteration on a separate computing stage. This results in a 
parallel structure, as shown in Fig. 2. The parallel architecture 
can be easily pipelined by placing registers after every 
computation stage. Thus, a sequential iterative architecture is 
converted into a combinational (pipelined) feed-forward 
architecture. 
 

 
Fig. 1. Sequential CORDIC-based Square architecture 

 

 
Fig. 2. Unfolded CORDIC-based Square architecture 
 

The square architecture of Fig. 2 is based on simple shift 
and add operations. For larger magnitude operands, the 
algorithm will require a lot of stages to converge to an 
acceptable level of accuracy. This will incur a lot of hardware 
costs and a degradation in performance and accuracy. To avoid 
this, the input is scaled down such that its value lies in the 
range [0,1). This is done by scaling the x vector by 2n. The 
new input is thus represented in fixed-point 2’s complement 
format as: 

𝐱𝐱s
� = 𝐱𝐱n

�  . 𝐱𝐱n−1
�  𝐱𝐱n−2

�  𝐱𝐱n−�
� … … 𝐱𝐱1

�  𝐱𝐱0
�  (12) 

The value of the input is given as: 

𝐱𝐱s
� = ∑ 𝐱𝐱n−i

� 2−in
i=1  (13) 

The result is then obtained by scaling the output from the last 
stage by 22n. Note that CORDIC-based computations are only 
approximate. The number of iterations will, therefore, 
determine the accuracy of the final result. We, therefore, 
conducted a detailed Pareto analysis to determine the number 
of optimal stages that will justify the accuracy-performance 
trade-offs. Our analysis considers the 8-bit CORDIC square 
architecture. The added advantage of similar inputs in the 
squaring operation lowers the permutations that can exist for 
the inputs. A total of 256 input combinations exist for an 8-bit 
square architecture, and all such combinations are considered 
Pareto points. The Pareto analysis focuses on the variation of 
error with the number of computation stages. Specifically, we 
have used error rate (ER) and mean error distance (MED) to 
quantify the error in our computations. ER is defined as the 
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have used error rate (ER) and mean error distance (MED) to 
quantify the error in our computations. ER is defined as the 

 ̵ /+ 
 ̵ /+ 

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+ 

σ0

 ̵ /+ 2-1

 ̵ /+ 

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+ 

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+ 

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

Or

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 

Since the algorithm is being operated in rotation mode after m 
iterations, the value of the residual angle (zm) will be 
extremely small and may be equated to 0. Therefore, after m 
iterations: 

𝐳𝐳m = 0 

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0 

Or 

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1 

Or 

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s 

The final equations after m iterations would, therefore, be: 

𝐱𝐱m = 𝐱𝐱s (7) 

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8) 

𝐳𝐳m = 0 (9) 

Equivalently, the above set of equations may be written as: 
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In equation (8), if xs = zs, and ys = 0, then ym will compute the 
square of the input xs. A direct mapping of the set of equations 
in (5) and (6) will result in an iterative (folded) architecture, as 
shown in Fig. 1. The iterative architecture is sequential and 
incurs a lot of latency, which is unsuitable for high-speed DSP 
applications. The iterative architecture can be unfolded to map 
each iteration on a separate computing stage. This results in a 
parallel structure, as shown in Fig. 2. The parallel architecture 
can be easily pipelined by placing registers after every 
computation stage. Thus, a sequential iterative architecture is 
converted into a combinational (pipelined) feed-forward 
architecture. 
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approximate. The number of iterations will, therefore, 
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Since the algorithm is being operated in rotation mode after m 
iterations, the value of the residual angle (zm) will be 
extremely small and may be equated to 0. Therefore, after m 
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In equation (8), if xs = zs, and ys = 0, then ym will compute the 
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in (5) and (6) will result in an iterative (folded) architecture, as 
shown in Fig. 1. The iterative architecture is sequential and 
incurs a lot of latency, which is unsuitable for high-speed DSP 
applications. The iterative architecture can be unfolded to map 
each iteration on a separate computing stage. This results in a 
parallel structure, as shown in Fig. 2. The parallel architecture 
can be easily pipelined by placing registers after every 
computation stage. Thus, a sequential iterative architecture is 
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square of the input xs. A direct mapping of the set of equations 
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incurs a lot of latency, which is unsuitable for high-speed DSP 
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each iteration on a separate computing stage. This results in a 
parallel structure, as shown in Fig. 2. The parallel architecture 
can be easily pipelined by placing registers after every 
computation stage. Thus, a sequential iterative architecture is 
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Since the algorithm is being operated in rotation mode after m 
iterations, the value of the residual angle (zm) will be 
extremely small and may be equated to 0. Therefore, after m 
iterations: 

𝐳𝐳m = 0 

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0 

Or 

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1 

Or 

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s 

The final equations after m iterations would, therefore, be: 

𝐱𝐱m = 𝐱𝐱s (7) 

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8) 

𝐳𝐳m = 0 (9) 
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In equation (8), if xs = zs, and ys = 0, then ym will compute the 
square of the input xs. A direct mapping of the set of equations 
in (5) and (6) will result in an iterative (folded) architecture, as 
shown in Fig. 1. The iterative architecture is sequential and 
incurs a lot of latency, which is unsuitable for high-speed DSP 
applications. The iterative architecture can be unfolded to map 
each iteration on a separate computing stage. This results in a 
parallel structure, as shown in Fig. 2. The parallel architecture 
can be easily pipelined by placing registers after every 
computation stage. Thus, a sequential iterative architecture is 
converted into a combinational (pipelined) feed-forward 
architecture. 
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conducted a detailed Pareto analysis to determine the number 
of optimal stages that will justify the accuracy-performance 
trade-offs. Our analysis considers the 8-bit CORDIC square 
architecture. The added advantage of similar inputs in the 
squaring operation lowers the permutations that can exist for 
the inputs. A total of 256 input combinations exist for an 8-bit 
square architecture, and all such combinations are considered 
Pareto points. The Pareto analysis focuses on the variation of 
error with the number of computation stages. Specifically, we 
have used error rate (ER) and mean error distance (MED) to 
quantify the error in our computations. ER is defined as the 

 ̵ /+ 
 ̵ /+ 

D

D

>> i

D

2-i

xi+1

yi+1

zi+1

xsys= 0zs

 ̵ /+ 20

 ̵ /+ 

σ0

 ̵ /+ 2-1

 ̵ /+ 

σ1

REGISTER

>>1

 ̵ /+ 2-2

 ̵ /+ 

σ2
>>2

REGISTER

 ̵ /+ 2-i

 ̵ /+ 

σi
>>i

REGISTER

ym

Stage 1

Stage 2

Stage 3

Stage i

	 (8)

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 

Since the algorithm is being operated in rotation mode after m 
iterations, the value of the residual angle (zm) will be 
extremely small and may be equated to 0. Therefore, after m 
iterations: 

𝐳𝐳m = 0 

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0 

Or 

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1 

Or 

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s 

The final equations after m iterations would, therefore, be: 

𝐱𝐱m = 𝐱𝐱s (7) 

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8) 

𝐳𝐳m = 0 (9) 

Equivalently, the above set of equations may be written as: 
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In equation (8), if xs = zs, and ys = 0, then ym will compute the 
square of the input xs. A direct mapping of the set of equations 
in (5) and (6) will result in an iterative (folded) architecture, as 
shown in Fig. 1. The iterative architecture is sequential and 
incurs a lot of latency, which is unsuitable for high-speed DSP 
applications. The iterative architecture can be unfolded to map 
each iteration on a separate computing stage. This results in a 
parallel structure, as shown in Fig. 2. The parallel architecture 
can be easily pipelined by placing registers after every 
computation stage. Thus, a sequential iterative architecture is 
converted into a combinational (pipelined) feed-forward 
architecture. 
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approximate. The number of iterations will, therefore, 
determine the accuracy of the final result. We, therefore, 
conducted a detailed Pareto analysis to determine the number 
of optimal stages that will justify the accuracy-performance 
trade-offs. Our analysis considers the 8-bit CORDIC square 
architecture. The added advantage of similar inputs in the 
squaring operation lowers the permutations that can exist for 
the inputs. A total of 256 input combinations exist for an 8-bit 
square architecture, and all such combinations are considered 
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Equivalently, the above set of equations may be written as:
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Since the algorithm is being operated in rotation mode after m 
iterations, the value of the residual angle (zm) will be 
extremely small and may be equated to 0. Therefore, after m 
iterations: 

𝐳𝐳m = 0 

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0 

Or 
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Or 
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In equation (8), if xs = zs, and ys = 0, then ym will compute the 
square of the input xs. A direct mapping of the set of equations 
in (5) and (6) will result in an iterative (folded) architecture, as 
shown in Fig. 1. The iterative architecture is sequential and 
incurs a lot of latency, which is unsuitable for high-speed DSP 
applications. The iterative architecture can be unfolded to map 
each iteration on a separate computing stage. This results in a 
parallel structure, as shown in Fig. 2. The parallel architecture 
can be easily pipelined by placing registers after every 
computation stage. Thus, a sequential iterative architecture is 
converted into a combinational (pipelined) feed-forward 
architecture. 
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= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 

Since the algorithm is being operated in rotation mode after m 
iterations, the value of the residual angle (zm) will be 
extremely small and may be equated to 0. Therefore, after m 
iterations: 

𝐳𝐳m = 0 

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0 

Or 

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1 

Or 

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s 

The final equations after m iterations would, therefore, be: 

𝐱𝐱m = 𝐱𝐱s (7) 

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8) 

𝐳𝐳m = 0 (9) 

Equivalently, the above set of equations may be written as: 

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s
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𝐳𝐳m = 0 (11) 

In equation (8), if xs = zs, and ys = 0, then ym will compute the 
square of the input xs. A direct mapping of the set of equations 
in (5) and (6) will result in an iterative (folded) architecture, as 
shown in Fig. 1. The iterative architecture is sequential and 
incurs a lot of latency, which is unsuitable for high-speed DSP 
applications. The iterative architecture can be unfolded to map 
each iteration on a separate computing stage. This results in a 
parallel structure, as shown in Fig. 2. The parallel architecture 
can be easily pipelined by placing registers after every 
computation stage. Thus, a sequential iterative architecture is 
converted into a combinational (pipelined) feed-forward 
architecture. 
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The square architecture of Fig. 2 is based on simple shift 
and add operations. For larger magnitude operands, the 
algorithm will require a lot of stages to converge to an 
acceptable level of accuracy. This will incur a lot of hardware 
costs and a degradation in performance and accuracy. To avoid 
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The result is then obtained by scaling the output from the last 
stage by 22n. Note that CORDIC-based computations are only 
approximate. The number of iterations will, therefore, 
determine the accuracy of the final result. We, therefore, 
conducted a detailed Pareto analysis to determine the number 
of optimal stages that will justify the accuracy-performance 
trade-offs. Our analysis considers the 8-bit CORDIC square 
architecture. The added advantage of similar inputs in the 
squaring operation lowers the permutations that can exist for 
the inputs. A total of 256 input combinations exist for an 8-bit 
square architecture, and all such combinations are considered 
Pareto points. The Pareto analysis focuses on the variation of 
error with the number of computation stages. Specifically, we 
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quantify the error in our computations. ER is defined as the 
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In equation (8), if xs = zs, and ys = 0, then ym will compute the 
square of the input xs. A direct mapping of the set of equations 
in (5) and (6) will result in an iterative (folded) architecture, 
as shown in Fig. 1. The iterative architecture is sequential and 
incurs a lot of latency, which is unsuitable for high-speed DSP 
applications. The iterative architecture can be unfolded to map 
each iteration on a separate computing stage. This results in a 
parallel structure, as shown in Fig. 2. The parallel architecture 
can be easily pipelined by placing registers after every compu-
tation stage. Thus, a sequential iterative architecture is convert-
ed into a combinational (pipelined) feed-forward architecture.
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The square architecture of Fig. 2 is based on simple shift 
and add operations. For larger magnitude operands, the algo-
rithm will require a lot of stages to converge to an acceptable 
level of accuracy. This will incur a lot of hardware costs and 
a degradation in performance and accuracy. To avoid this, the 
input is scaled down such that its value lies in the range [0,1). 
This is done by scaling the x vector by 2n. The new input is thus 
represented in fixed-point 2’s complement format as:

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 

Since the algorithm is being operated in rotation mode after m 
iterations, the value of the residual angle (zm) will be 
extremely small and may be equated to 0. Therefore, after m 
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The final equations after m iterations would, therefore, be: 

𝐱𝐱m = 𝐱𝐱s (7) 

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8) 

𝐳𝐳m = 0 (9) 
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incurs a lot of latency, which is unsuitable for high-speed DSP 
applications. The iterative architecture can be unfolded to map 
each iteration on a separate computing stage. This results in a 
parallel structure, as shown in Fig. 2. The parallel architecture 
can be easily pipelined by placing registers after every 
computation stage. Thus, a sequential iterative architecture is 
converted into a combinational (pipelined) feed-forward 
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stage by 22n. Note that CORDIC-based computations are only 
approximate. The number of iterations will, therefore, 
determine the accuracy of the final result. We, therefore, 
conducted a detailed Pareto analysis to determine the number 
of optimal stages that will justify the accuracy-performance 
trade-offs. Our analysis considers the 8-bit CORDIC square 
architecture. The added advantage of similar inputs in the 
squaring operation lowers the permutations that can exist for 
the inputs. A total of 256 input combinations exist for an 8-bit 
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error with the number of computation stages. Specifically, we 
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The value of the input is given as:

= 𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 

Since the algorithm is being operated in rotation mode after m 
iterations, the value of the residual angle (zm) will be 
extremely small and may be equated to 0. Therefore, after m 
iterations: 

𝐳𝐳m = 0 

𝐳𝐳s ∓ 1 ∓ 2−1 ∓ 2−2 ∓ ⋯ ∓ 2−m+1 = 0 

Or 

𝐳𝐳s = 1 ± 2−1 ± 2−2 ± ⋯ ± 2−m+1 

Or 

𝐲𝐲m = 𝐲𝐲s ± 𝐱𝐱s𝐳𝐳s 

The final equations after m iterations would, therefore, be: 

𝐱𝐱m = 𝐱𝐱s (7) 

𝐲𝐲m = 𝐱𝐱s𝐳𝐳s + 𝐲𝐲s (8) 

𝐳𝐳m = 0 (9) 

Equivalently, the above set of equations may be written as: 

�
𝐱𝐱m
𝐲𝐲m

� = � 1 0
𝐳𝐳s 1� �

𝐱𝐱s
𝐲𝐲s

� (10) 

𝐳𝐳m = 0 (11) 

In equation (8), if xs = zs, and ys = 0, then ym will compute the 
square of the input xs. A direct mapping of the set of equations 
in (5) and (6) will result in an iterative (folded) architecture, as 
shown in Fig. 1. The iterative architecture is sequential and 
incurs a lot of latency, which is unsuitable for high-speed DSP 
applications. The iterative architecture can be unfolded to map 
each iteration on a separate computing stage. This results in a 
parallel structure, as shown in Fig. 2. The parallel architecture 
can be easily pipelined by placing registers after every 
computation stage. Thus, a sequential iterative architecture is 
converted into a combinational (pipelined) feed-forward 
architecture. 
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The result is then obtained by scaling the output from the last 
stage by 22n. Note that CORDIC-based computations are only 
approximate. The number of iterations will, therefore, 
determine the accuracy of the final result. We, therefore, 
conducted a detailed Pareto analysis to determine the number 
of optimal stages that will justify the accuracy-performance 
trade-offs. Our analysis considers the 8-bit CORDIC square 
architecture. The added advantage of similar inputs in the 
squaring operation lowers the permutations that can exist for 
the inputs. A total of 256 input combinations exist for an 8-bit 
square architecture, and all such combinations are considered 
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The result is then obtained by scaling the output from the last 
stage by 22n. Note that CORDIC-based computations are only 
approximate. The number of iterations will, therefore, deter-
mine the accuracy of the final result. We, therefore, conducted 
a detailed Pareto analysis to determine the number of optimal 
stages that will justify the accuracy-performance trade-offs. 
Our analysis considers the 8-bit CORDIC square architecture. 
The added advantage of similar inputs in the squaring operation 
lowers the permutations that can exist for the inputs. A total 
of 256 input combinations exist for an 8-bit square architec-
ture, and all such combinations are considered Pareto points. 
The Pareto analysis focuses on the variation of error with the 
number of computation stages. Specifically, we have used error 
rate (ER) and mean error distance (MED) to quantify the error 
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in our computations. ER is defined as the percentage of outputs 
in error. MED is defined as the average of error distance (ED) 
values for a set of input-output samples. Mathematically,

percentage of outputs in error. MED is defined as the average 
of error distance (ED) values for a set of input-output samples. 
Mathematically, 

MED = 1
N

∑ |EDi|N
i=1  (14) 

Where N is the number of patterns. The results of the Pareto 
analysis are presented in Figs. 3 and 4, where the MED and 
ER for all the input combinations are plotted as a function of 
the number of CORDIC stages, respectively. A MED of 7.8 is 
achieved with a CORDIC square architecture designed in 8 
stages; thereafter, any increase in the number of stages does 
not result in any significant reduction in MED. In fact, as the 

number of stages is further increased, the correctly obtained 
outputs are subjected to further computations, thereby 
introducing errors in the results. This is evident from Fig. 3, 
where the MED slightly increases after 10 stages due to over-
computation of the results. Similarly, an ER of 5% is achieved 
with a CORDIC square architecture designed in 8 stages, 
which signifies that 95% of results are accurate. Based on the 
fixed-point representation of equation (12) and the results 
from the Pareto analysis, an illustration of the stage-wise 
computations for the CORDIC squarer is presented in Table I. 
The modified square structure is shown in Fig. 5. 

 
TABLE I 

STAGE-WISE COMPUTATIONS FOR AN 8-BIT CORDIC SQUARE ARCHITECTURE. 

Initial Inputs 𝐱𝐱𝐬𝐬  = 011011102 

    = 11010 
𝐲𝐲𝐬𝐬 = 000000002 

    = 010 
𝐳𝐳𝐬𝐬 = 011011102 

    = 11010 
Inputs 𝐱𝐱𝐬𝐬 and 
𝐳𝐳𝐬𝐬 scaled down by 
28 

𝐱𝐱𝐬𝐬
�  = 0.011011102 

    = 0.429687510 
𝐲𝐲𝐬𝐬

� = 0.000000002 

    = 0.010 
𝐳𝐳𝐬𝐬

� = 0.011011102 

    = 0.429687510 

1st Stage 
𝐱𝐱1 = 𝐱𝐱s

�  
𝐲𝐲1 = 𝐲𝐲s

� + σ020𝐱𝐱s
�  

𝐳𝐳1 = 𝐳𝐳s
� − σ020 

σ0 = sign(𝐳𝐳s
� ) = 0(+ive) 

𝐱𝐱1  = 0.011011102 

    = 0.429687510 

𝐲𝐲1 = 0.000000002 + 0.011011102 

     = 0.011011102 
     = 0.429687510 

𝐳𝐳1 = 0.011100012 - 1.000000002 

     = 1.011011102 
     = - 0.57031310 

2nd Stage 
𝐱𝐱2 = 𝐱𝐱1 
𝐲𝐲2 = 𝐲𝐲1 + σ12−1𝐱𝐱1 
𝐳𝐳2 = 𝐳𝐳1 − σ12−1 

σ1 = sign(𝐳𝐳1) = 1(−ive) 

𝐱𝐱2  = 0.011011102 

    = 0.429687510 

𝐲𝐲2 = 0.0110111002 - 0.0011011102 
     = 0.0011011102 
     = 0.2148437510 

𝐳𝐳2 = 1.011011102 + 0.100000002 
     = 1.111011102 
     = - 0.07031310 

3rd Stage 
𝐱𝐱� = 𝐱𝐱2 
𝐲𝐲� = 𝐲𝐲2 + σ22−2𝐱𝐱2 
𝐳𝐳� = 𝐳𝐳2 − σ22−2 

σ2 = sign(𝐳𝐳𝟐𝟐) = 1(−ive) 

𝐱𝐱�  = 0.011011102 

    = 0.429687510 

𝐲𝐲� = 0.00110111002 - 0.00011011102 
     = 0.00011011102 
     = 0.10742187510 

𝐳𝐳� = 1.111011102 + 0.010000002 
     = 0.001011012 
     = 0.17968710 

4th Stage 
𝐱𝐱� = 𝐱𝐱� 
𝐲𝐲� = 𝐲𝐲� + σ�2−�𝐱𝐱� 
𝐳𝐳� = 𝐳𝐳� − σ�2−� 

σ� = sign(𝐳𝐳𝟑𝟑) = 0(+ive) 

𝐱𝐱�  = 0.011011102 

    = 0.429687510 

𝐲𝐲� = 0.000110111002 + 0.000011011102 
     = 0.001010010102 
     = 0.161132812510 

𝐳𝐳� = 0.001011012 - 0.001000002 
     = 0.000011012 
     = 0.05468710 

5th Stage 
𝐱𝐱� = 𝐱𝐱� 
𝐲𝐲� = 𝐲𝐲� + σ�2−�𝐱𝐱� 
𝐳𝐳� = 𝐳𝐳� − σ�2−� 

σ� = sign(𝐳𝐳𝟒𝟒) = 0(+ive) 

𝐱𝐱�  = 0.011011102 

    = 0.429687510 

𝐲𝐲� = 0.0010100101002 + 0.0000011011102 
     = 0.0011000000102 
     = 0.1879882812510 

𝐳𝐳� = 0.000011012 - 0.000100002 
     = 0.000000102 
     = - 0.00781310 

6th Stage 
𝐱𝐱� = 𝐱𝐱� 
𝐲𝐲� = 𝐲𝐲� + σ�2−�𝐱𝐱� 
𝐳𝐳� = 𝐳𝐳� − σ�2−� 

σ� = sign(𝐳𝐳𝟓𝟓) = 1(−ive) 

𝐱𝐱�  = 0.011011102 

    = 0.429687510 

𝐲𝐲� = 0.00110000001002 - 0.00000011011102 
     = 0.00101100101102 
     = 0.17456054687510 

𝐳𝐳� = 0.000000102 + 0.000010002 
     = 0.000001012 
     = 0.02343710 

7th Stage 
𝐱𝐱� = 𝐱𝐱� 
𝐲𝐲� = 𝐲𝐲� + σ�2−�𝐱𝐱� 
𝐳𝐳� = 𝐳𝐳� − σ�2−� 

σ� = sign(𝐳𝐳𝟔𝟔) = 0(+ive) 

𝐱𝐱�  = 0.011011102 

    = 0.429687510 

𝐲𝐲� = 0.001011001011002 + 0.000000011011102 
     = 0.001011100110102 
     = 0.181274414062510 

𝐳𝐳� = 0.000001012 - 0.000001002 
     = 0.000000012 
     = 0.00781210 

8th Stage 
𝐱𝐱� = 𝐱𝐱� 
𝐲𝐲� = 𝐲𝐲� + σ�2−�𝐱𝐱� 
𝐳𝐳� = 𝐳𝐳� − σ�2−� 

σ� = sign(𝐳𝐳𝟕𝟕) = 0(+ive) 

𝐱𝐱�  = 0.011011102 

    = 0.429687510 

𝐲𝐲� = 0.0010111001101002 + 0.0000000011011102 

     = 0.0010111101000102 
     = 0.1846313476562510 

𝐳𝐳� = 0.000000012 - 0.000000102 

     = 1.111111112 
     = - 0.000000510 

Multiplier Output after 8 stages (Bit 
adjusted and scaled up by 216) 

= 000101111010001002 

= 1210010 

	 (14)

Where N is the number of patterns. The results of the Pareto 
analysis are presented in Figs. 3 and 4, where the MED and 
ER for all the input combinations are plotted as a function of 
the number of CORDIC stages, respectively. A MED of 7.8 
is achieved with a CORDIC square architecture designed in 8 
stages; thereafter, any increase in the number of stages does not 
result in any significant reduction in MED. In fact, as the num-

ber of stages is further increased, the correctly obtained outputs 
are subjected to further computations, thereby introducing er-
rors in the results. This is evident from Fig. 3, where the MED 
slightly increases after 10 stages due to over-computation of 
the results. Similarly, an ER of 5% is achieved with a CORDIC 
square architecture designed in 8 stages, which signifies that 
95% of results are accurate. Based on the fixed-point represen-
tation of equation (12) and the results from the Pareto analysis, 
an illustration of the stage-wise computations for the CORDIC 
squarer is presented in Table I. The modified square structure is 
shown in Fig. 5.

TABLE I
Stage-wise Computations for an 8-bit CORDIC Square Architecture.

Initial Inputs  = 011011102
    = 11010

 = 000000002
    = 010

 = 011011102
    = 11010

Inputs  and scaled down by 28  = 0.011011102
    = 0.429687510

 = 0.000000002
    = 0.010

 = 0.011011102
    = 0.429687510

1st Stage

 = 0.011011102
    = 0.429687510

 = 0.000000002 + 0.011011102
     = 0.011011102
     = 0.429687510

 = 0.011100012 - 1.000000002
     = 1.011011102
     = - 0.57031310

2nd Stage

 = 0.011011102
    = 0.429687510

 = 0.0110111002 - 0.0011011102
     = 0.0011011102
     = 0.2148437510

 = 1.011011102 + 0.100000002
     = 1.111011102
     = - 0.07031310

3rd Stage

 = 0.011011102
    = 0.429687510

 = 0.00110111002 - 0.00011011102
     = 0.00011011102
     = 0.10742187510

 = 1.111011102 + 0.010000002
     = 0.001011012
     = 0.17968710

4th Stage

 = 0.011011102
    = 0.429687510

 = 0.000110111002 + 0.000011011102
     = 0.001010010102
     = 0.161132812510

 = 0.001011012 - 0.001000002
     = 0.000011012
     = 0.05468710

5th Stage

 = 0.011011102
    = 0.429687510

 = 0.0010100101002 + 0.0000011011102
     = 0.0011000000102
     = 0.1879882812510

 = 0.000011012 - 0.000100002
     = 0.000000102
     = - 0.00781310

6th Stage

 = 0.011011102
    = 0.429687510

 = 0.00110000001002 - 0.00000011011102
     = 0.00101100101102
     = 0.17456054687510

 = 0.000000102 + 0.000010002
     = 0.000001012
     = 0.02343710

7th Stage

 = 0.011011102
    = 0.429687510

 = 0.001011001011002 + 0.000000011011102
     = 0.001011100110102
     = 0.181274414062510

 = 0.000001012 - 0.000001002
     = 0.000000012
     = 0.00781210

8th Stage

 = 0.011011102
    = 0.429687510

 = 0.0010111001101002 + 0.0000000011011102
     = 0.0010111101000102
     = 0.1846313476562510

 = 0.000000012 - 0.000000102
     = 1.111111112
     = - 0.000000510

Multiplier Output after 8 stages (Bit adjusted and scaled up 
by 216)

= 000101111010001002

= 1210010



ELECTRONICS, VOL. 29, NO. 2, DECEMBER 2025 57

2 3 4 5 6 7 8 9 10 11 12 13 14
0

75

150

225

300

375

450

525

600

512.3

234.5

112.4
54.2

25.4 7.8 7.7 7.7 15.3 30.5
62.3

 

M
E

D

No. of CORDIC Stages

Fig. 3. Variation of MED with the number of computation stages for CORDIC-
based 8-bit Square architecture.
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Fig. 4. Variation of ER with the number of computation stages for CORDIC-
based 8-bit Square architecture.
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Where Rmax is the maximum exact result of the computation. 
The error metrics are computed using the Vivado 23.1 
simulator. The input patterns are provided as an input text file, 
and the calculated output of different approximate designs is 
also written to a separate text file. The computed outputs are 
then compared to the exact outputs for each pattern, and ED 
for each pattern is calculated. MED is then computed as the 
average of EDs. Table II provides a comparison of different 8-
bit square architectures. It is observed that the CORDIC-based 
square architecture has the least MED and NMED among the 
various designs. 
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Where Rmax is the maximum exact result of the computation. 
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lator. The input patterns are provided as an input text file, and 
the calculated output of different approximate designs is also 
written to a separate text file. The computed outputs are then 
compared to the exact outputs for each pattern, and ED for each 
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TABLE II
Accuracy Analysis of Different Square Architectures for 8-bit Oper-

ands
Design MED NMED

[11] 21.8 0.00034
MCom 4:2 [12] 204.1 0.00314
MFA1 [12] 67.45 0.00104
MFA2 [12] 45.12 0.0007
[13] 137.3 0.0021
Normal [14] 16.4 0.00025
Hybrid [14] 11.3 0.00017
MUL1 [15] 121.32 0.00186
MUL2 [15] 115.7 0.00178
RRAM-I [16] 72.8 0.00112
RRAM-II [16] 9.32 0.00014
Proposed 7.8 0.00012
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V. Synthesis & Implementation

The proposed square architecture is implemented both on 
ASIC and FPGA platforms. The ASIC implementation is based 
on the TSMC 180 nm CMOS technology using the Synopsys 
design tool. The simulations are conducted at an operating volt-
age of 1.8 V with an operating temperature of 25º C and a target 
clock frequency of 100 MHz. The area, critical path delay, and 
dynamic power dissipation are reported for each design. For 
FPGA implementation, the architecture in Fig. 5 is coded using 
VHDL and implemented using Xilinx Vivado 23.1, targeting 
the 7th generation xc7k325tffg900c FPGA device from the Kin-
tex-7 family. The analysis involves resources, timing, and dy-
namic power dissipation as parameters of interest. Implemen-
tation is done under a constrained environment for both ASIC 
and FPGA platforms, with both physical and timing constraints 
being duly provided to emulate the actual operating condi-
tions. The metrics are reported after the complete placement 
and routing of the design. Table III compares the performance 
of the proposed square architecture against different exact and 
approximate square architectures reported in the literature. The 
analysis is done for an operand word length of eight bits. The 
analysis reveals that the CORDIC-based square architecture 
shows an improved performance when compared to the exist-
ing exact and approximate designs. For ASIC implementation, 
a few designs report slightly better metrics than our proposed 
architecture. However, our design reports the best metrics for 

FPGA platforms, with only MUL1-based square architecture 
reported in [15] showing reduced LUT count and dynamic 
power dissipation. However, the square architecture based on 
the MUL1 design is a serial architecture and has an extremely 
large critical path delay. To get a better perspective of the per-
formance improvement, Table IV shows the power-delay-area 
product (PDAP) for different designs on ASIC and FPGA plat-
forms. Our design reports a 25% and 38% improvement over 
the next best design for ASIC and FPGA platforms, respective-
ly. Due to the rigorous pipelining, our design implementation 
requires more registers than the other reported. However, each 
logic slice in Kintex-7 FPGAs supports eight flip-flop registers; 
thus, using these registers does not incur any extra hardware 
cost. Including these registers in the implementation process 
considerably reduces the critical paths. This has two advan-
tages; first, the structure can be clocked at higher frequencies, 
enhancing speed and throughput. Second, the capacitances to 
be charged and discharged in a single clock cycle are reduced, 
reducing dynamic power dissipation. Further analysis focuses 
on the achievable accuracy versus performance trade-offs using 
the proposed square architecture. This is shown in Figs. 6 and 
7, where power-delay-product (PDP) and resource usage are 
plotted against the NMED for different exact and approximate 
square architectures for FPGA and ASIC platforms, respective-
ly. For a given NMED, our proposed square architecture has 
the least PDP and utilizes the least resources. Similar results are 
reflected in Figs. 8 and 9, plotting PDAP against the NMED for 

TABLE III
Performance Analysis of Different 8-bit Square Architectures on ASIC and FPGA Platforms

Design
ASIC (180 nm CMOS) FPGA (xc7k325tffg900c)

Area (µm2) Delay (ns) Power (mW) LUT Delay (ns) Power (mW)

Accurate

[05] 1910.32 2.34 0.062 56 4.879 28.2

[20] 2115.44 2.65 0.067 62 8.6 29

[23] 1978.96 2.44 0.062 58 5.6 29

[24] 4503.84 2.98 0.075 132 9.8 28.2

[25] 3616.72 2.71 0.071 106 9.4 28.2

[26] 3343.76 2.66 0.071 98 8.9 20

[27] 2653.21 2.93 0.069 68 9.11 21

Approximate

[11] 3421.12 1.612 0.066 59 4.1 21.33

MCom 4:2 [12] 2114.32 1.495 0.052 48 3.4 23.43

MFA1 [12] 3461.65 1.567 0.063 64 4.02 21.88

MFA2 [12] 4094.22 1.588 0.071 66 4.44 22.11

[13] 2312.16 1.441 0.0591 52 3.33 20.67

Normal [14] 2117.65 1.431 0.0583 50 3.76 21.56

Hybrid [14] 2216.71 1.442 0.0586 52 3.81 21.6

MUL1 [15] 1412.32 3.112 0.0411 32 7.8 18.75

MUL2 [15] 1721.11 3.211 0.0431 39 8.01 18.89

RRAM-I [16] 2410.61 1.621 0.056 53 3.01 20.87

RRAM-II [16] 2441.11 1.562 0.0552 54 3.334 20.81

Proposed 1522.01 1.44 0.0561 36 2.929 19.43
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different exact and approximate square architectures for FPGA 
and ASIC platforms, respectively.

The proposed square architecture is also tested by using it to 
increase the intensity of the output pixels in an image edge-de-
tection application, thereby leading to better contrast enhance-
ment. Edge detection is performed by applying Gaussian noise 
filtering followed by horizontal and vertical filters to detect the 
edges. The proposed square architecture is then used to improve 
the contrast of the final filtered image by multiplying it with 
itself. The quality of the output image is reported in terms of 
the peak signal-to-noise ratio (PSNR) calculated with respect to 
the image obtained using the exact square architecture. Fig. 10 
shows the output images obtained using different square archi-
tectures. Our proposed square architectures report an improve-
ment of 20% in PSNR over the next best architecture.

TABLE IV
PDAP Analysis of Different 8-bit Square Architectures on ASIC and 

FPGA Platforms

Design ASIC (180 nm CMOS) FPGA (xc7k325tffg900c)

PDAP (fJm2) PDAP (nJA)

[05] 0.277149 7.704917

[20] 0.375596 15.4628

[23] 0.299377 9.4192

[24] 1.006608 36.47952

[25] 0.695893 28.09848

[26] 0.631503 17.444

[27] 0.5363 13.009

[11] 0.36398 5.159727

MCom 4:2 [12] 0.164367 3.823776

MFA1 [12] 0.341738 5.629286

MFA2 [12] 0.461615 6.479114

[13] 0.196911 3.579217

Normal [14] 0.17667 4.05328

Hybrid [14] 0.187315 4.279392

MUL1 [15] 0.18064 4.68

MUL2 [15] 0.238191 5.901047

RRAM-I [16] 0.218826 3.329391

RRAM-II [16] 0.210478 3.746549

Proposed 0.122954 2.048777

Fig. 6. PDP-LUT-NMED plot for different Square architectures implemented 
on the FPGA platform.

Fig. 7. PDP-AREA-NMED plot for different Square architectures implemented 
on the ASIC platform.

V. CONCLUSION

In this paper, we propose a square architecture based on 
the operation of the CORDIC algorithm in a linear coordinate 
system. While CORDIC has frequently been used in literature 
to evaluate different trigonometric and transcendental func-
tions, it is very rarely used to evaluate linear functions. Being 
hardware-efficient, the computations are simple, enabling the 
inherent algorithm to be translated into diverse architectures 
to suit the application demands. In this paper, we focussed on 
unfolded (pipelined) architectures. Our analysis with ASIC 
and 7th-generation FPGAs reported a substantial performance 
improvement evaluated in terms of PDAP. Further, the accura-
cy-performance trade-offs achievable with our proposed square 
architecture outperform all the existing approximate multipli-
er-based square architectures. Heuristically, the convergence of 
the architecture shares a linear relationship with the operand 
word length. For large operand word-lengths, therefore, there 
will be an exponential increase in the resource utilized. Our fu-
ture endeavors will focus on speeding up the convergence of 
the computations through the use of radix-4 arithmetic. This 
will reduce the number of iterative stages, resulting in lesser 
LUT utilization.
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the FPGA platform.
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Fig. 9. PDAP-NMED plot for different Square architectures implemented on 
the ASIC platform.

Fig. 10. Contrast enhancement using different square architectures for an edge-
detection application.
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