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Abstract—As computers develops, virtual simulation tech-
nology becomes an important means of integrated circuit design. 
Therefore, based on the demand for virtual simulation of integrat-
ed circuits, a simulation method combining affinity propagation 
and differential evolution algorithm was proposed. By applying 
the affinity propagation to circuit fault diagnosis and combining 
it with differential evolution algorithm, circuit parameters optimi-
zation was carried out. These experiments confirm that the fusion 
of affinity propagation and differential evolution algorithm has a 
precision of 94.26%, recall of 93.41%, mean F1 of 88.59%, con-
vergence speed of 56.77 seconds, and stability of 93.17%. The af-
finity propagation performs well in clustering. Especially without 
pre-defining the classes, it can identify the position and number of 
class centers automatically. The simulation of integrating affinity 
propagation and differential evolution algorithm has broad appli-
cation prospects in virtual simulation of integrated circuits. It can 
improve simulation effectiveness and performance, providing ef-
fective support for circuit design and testing.

Index Terms—AP algorithm, differential evolution algorithm, 
integrated circuits, virtual simulation.
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I. Introduction

AS technology advances, integrated circuit design faces 
complex challenges. While meeting performance, power 

consumption, and area requirements, it is also necessary to con-
sider various issues that may arise during the manufacturing 
process. Virtual simulation, as an important part of integrated 
circuit design, can effectively predict and solve these problems 
[1]. Integrated circuit virtual simulation is an important method 
for circuit design and testing, which can improve design effi-
ciency and reduce testing costs. However, due to the complex-
ity of integrated circuits and the diversity of faults, traditional 
simulation methods face certain challenges in terms of efficien-
cy and accuracy [2]. Affinity Propagation (AP) is a commonly 
used clustering method that can divide the sample set into dif-
ferent categories for circuit fault diagnosis. Differential Evolu-
tion (DE) is an optimization algorithm that optimizes circuit pa-
rameters to improve circuit performance and stability [3]. The 

study combines these two algorithms to diagnose circuit faults 
through AP, and then optimizes circuit parameters through DE 
to achieve efficient and accurate circuit virtual simulation. The 
study provides a more efficient and accurate virtual simulation 
method for integrated circuit design. The research can provide 
a more efficient and accurate virtual simulation method for IC 
design, so as to reduce the design cost, shorten the development 
cycle, and contribute to the development of IC industry. The 
paper is organized as follows: In the first section, the research 
background and purpose are proposed, the research content is 
introduced, and the research status of AP clustering algorithm, 
differential evolution algorithm and integrated circuit virtual 
simulation at home and abroad are discussed and analyzed. 
In the second section, the integrated circuit virtual simulation 
combining AP clustering algorithm and differential evolution 
algorithm is proposed. The circuit parameters of differential 
evolution algorithm are optimized, and the subpopulation is 
divided by AP clustering algorithm. In the third section, the ef-
fectiveness and performance of the algorithm and the virtual 
simulation circuit are verified by experiments. In the fourth sec-
tion, the research results are summarized.

II. Related Works

In recent years, AP has gradually become a popular clus-
tering algorithm and has been widely applied. DE is an evo-
lutionary optimization algorithm that has received widespread 
attention. The information fusing method is an important ana-
lyzing means. Zhao et al. proposed a multiple fusing method 
combing AP and other methods. This study confirmed that it 
had high classifying accuracy, showing good performance [4]. 
To provide a reasonable solution for improving the monitoring 
reliability and economic benefits of the entire industrial pro-
cess, Ma et al. put forward a distributed quality fault detecting 
framework with AP. These results confirmed the excellent fault 
detecting performance of this framework [5]. To improve the 
classical clustering algorithm, Tang et al. proposed a strategy 
to extend AP in non-spherical clustering by constructing class 
similarity of objects. These results confirmed that the adaptive 
spectral affinity propagation algorithm was superior to bench-
mark algorithms [6]. How to simultaneously locate multiple 
high-quality equivalent positioning systems and obtain a uni-
formly distributed probability density function remains a chal-
lenging task. Regarding this, Zhou et al. proposed a method 
for solving multi-modal multi-objective DE. These results con-
firmed the superiority of this model, which could locate multi-
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ple equivalent positioning systems and obtain a uniformly dis-
tributed probability density function [7]. To obtain more energy 
and reduce total costs for offshore wind turbines, Wang et al. 
proposed a novel accelerated multi-objective DE to globally 
optimize the device layout. These results confirmed that the op-
timized hybrid wind farm had a 37.75% increase in power gen-
eration compared to pure wind farms, and a 43.65% reduction 
in wind turbine foundation wave loads [8]. In many classic DE, 
population size is usually determined by users based on em-
pirical values. And it remains unchanged during the evolution 
process, which greatly affects the performance of differential 
evolution. Li et al. proposed a dynamic population reduction 
DE that combined linear and nonlinear strategy piece-wise 
functions. These results confirmed that dynamic population 
reduction DE performed well in overall performance and was 
significantly superior to other algorithms [9].

In recent years, virtual simulation of integrated circuits have 
been continuously developing and applied. To improve the 
linearity of presynaptic current, Cha et al. proposed a neuron 
circuit with a capacitive cross impedance amplifier integrator. 
These results confirmed that the proposed neural circuit suc-
cessfully improved output linearity at a wide range of input 
current levels [10]. To propose, design, and implement a novel 
narrowband pass filter based on half mode substrate integrated 
wave-guide, Mahant et al. proposed using Ansoft high-frequen-
cy structure simulator for simulation. These results confirmed 
that at a center frequency of 11.2 GHz, the return loss was 
20.39 dB, the insertion loss was 1.59 dB, and the 3dB fractional 
bandwidth was 2.58% [11]. Finding a balance between solar 
thermal gain and solar transmittance is an appropriate strate-
gy for achieving energy efficiency when designing photovol-
taic shading systems. Gao et al. proposed using parameterized 
script modeling to integrate thermal and lighting performance, 
and utilizing multi-objective optimization to optimize the bal-
ance between them. These results confirmed that the integrated 
framework was feasible and could be extended to the design of 
other advanced shading systems or building integrated photo-
voltaics [12]. In the absence of a multiplier circuit, the differen-
tial trans-conductance amplifier exhibits two operating modes: 
incremental and decreasing. Vista et al. proposed a floating 
memristor model using a single voltage difference trans-con-
ductance amplifier and grounded passive components. These 
results confirmed the performance of the proposed memristor 
by examining the characteristics of all possible temperature and 
process angles through the Cadence Virtuoso layout [13]. When 
connected to the grid, photovoltaic power generation systems 
can improve the quality of electricity. Rajagopal et al. proposed 
an adaptive neural fuzzy inference system based on an improved 
moth flame optimization algorithm. These results confirmed 
that the designed controller could maintain the exchange of ac-
tive and reactive power, regulate the DC bus voltage, grid volt-
age, and grid current [14]. Using an optimized circuit breaker 
model can estimate the energy absorption requirements during 
fault current suppression. Torwelle et al. proposed a universal 
fault current calculating means with equations. These results 
confirmed that this method could represent temporary blockag-

es over a large time after a fault occurs, facilitating the reactors 
and breakers’ determination in the power grid [15].

To sum up, the complexity of IC design requires that 
virtual simulation technology not only has efficient diagnostic 
capability, but also has accuracy in parameter optimization. 
Existing research, such as the work of Lee S and Ali Y, has made 
progress in battery performance simulation, but there is still 
room for improvement in the accuracy and efficiency of circuit 
simulation [16]. In addition, Yan Y et al. 's research on field 
effect transistors has promoted the development of integrated 
circuits, but has not fully solved the challenges of simulation 
technology in fault diagnosis and parameter optimization [17]. 
In view of these shortcomings, a combination of AP clustering 
algorithm and differential evolution algorithm is proposed to 
improve the efficiency and accuracy of IC virtual simulation. 
The innovation of this research lies in the development of a 
new simulation method by integrating the adaptive clustering 
ability of AP clustering algorithm and the global optimization 
characteristics of DE algorithm. This method shows higher 
precision, recall and F1 mean in circuit fault diagnosis and 
parameter optimization, and has faster convergence speed and 
higher stability. The study also explores the combination of 
multi-objective optimization algorithms and neural network 
techniques to provide new perspectives and tools for building 
energy efficient design, and this approach has been validated in 
multiple climate regions, showing its broad applicability and 
overall performance improvement.

III. Optimization of Circuit Parameters and Sub-
population Partitioning by Integrating AP

In this study, AP is used for clustering analysis of compo-
nents and sub-circuits. By measuring the similarity between 
components, they can be divided into different clusters. DE is 
used to optimize the parameter configuration of this circuit. By 
searching and optimizing in the parameter space, the optimal 
circuit configuration can be found to meet design and perfor-
mance requirements.

A.	 Circuit Parameters Optimization based on Differential 
Evolution Algorithm

In the field of integrated circuit design, we are faced with the 
dual challenges of fault diagnosis and parameter optimization. 
To address this challenge, the study proposes a novel approach 
that combines the advantages of differential evolution and 
adaptive particle swarm clustering. The differential evolution 
algorithm, known for its global search capability, iterates to find 
the optimal circuit parameter configuration by simulating the 
process of natural selection. The adaptive particle swarm clus-
tering algorithm, with its unique self-organizing characteristics, 
can automatically identify the similarities of components in the 
circuit and divide them into different categories, so as to assist 
fault diagnosis. The workflow of this fusion method can be sim-
plified into the following steps: Firstly, the circuit components 
are classified by the adaptive particle clustering algorithm, and 
the possible faulty component groups are identified; The differ-
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ential evolution algorithm is then optimized for the parameters 
of these groups to improve the overall performance and stabili-
ty of the circuit. This process not only improves the accuracy of 
fault detection, but also speeds up the speed of problem solving 
by optimizing circuit parameters, thus playing an important role 
in integrated circuit design and testing. In this way, problems 
can be found and solved at the design stage, reducing manu-
facturing costs and shortening the research and development 
cycle. DE is an optimizing algorithm used to solve continuous 
optimization problems. This algorithm originates from genetic 
algorithms and introduces differential operations in evolution 
to achieve efficient exploration and optimization of the search 
space. DE seeks the optimal solution by simulating the process 
of biological evolution. It is usually used to handle continuous 
optimization problems. In virtual simulation of integrated cir-
cuits, DE can find circuit parameters’ optimal configuration to 
improve circuit performance or reduce power consumption. By 
continuously adjusting the parameters of the circuit, such as re-
sistance, capacitance, and inductance, better circuit design and 
performance optimization can be achieved [18]. Fig. 1 shows 
the advantages and disadvantages of DE.

Fig. 1.  Advantages and disadvantages of differential evolution algorithm.

DE does not require gradient information for solving prob-
lems. This enables DE to be applied to various types of opti-
mization problems, including nonlinear, non-convex, and non-
smooth problems. DE has strong global search ability and can 
find better solutions in optimization problems of multi-dimen-
sional, multi-modal, and non-convex functions. By randomly 
generating mutated individuals and global search strategies, 
it can effectively seek the global optimal solution. The basic 
principle of DE is relatively simple, easy to understand and 
implement. It only requires three basic operations: mutation, 
crossover, and selection. Fig. 2 shows the mutation operation.

DE is relatively insensitive to the selection of initial solu-
tions and population size, and has strong robustness. Therefore, 
it has good adaptability and application flexibility in practice. 
DE can be easily parallelized, allowing for the use of multi-core 
or distributed computing resources to accelerate algorithm exe-

cution. The parameter selection in DE has a significant impact 
on its performance and effectiveness. Choosing appropriate pa-
rameter values can improve algorithm’s converging speed and 
quality, but it also increases the difficulty of parameter tuning. 
DE is used to optimize the parameter configuration of the cir-
cuit. By searching and optimizing in the parameter space, the 
optimal circuit configuration can be found to meet design and 
performance requirements. DE uses floating-point vectors to 
encode the population and generate individuals in the popula-
tion. DE is optimized by selecting two individuals from the par-
ent and performing a difference to obtain the difference vector. 
Secondly, differential vectors are used to accumulate another 
individual to obtain a subject. Then the parents and experimen-
tal individuals are crossed to produce new offspring. On this 
basis, by screening the parents and children, offspring that meet 
the conditions are selected [19]. Equation (1) is the assumed 
optimization model.

1 2min ( , ,..., ), , 1, 2,...,L U
D j j jf x x x x x x j D≤ ≤ = 	 (1)

In equation (1), D  is solution space’s dimension. ,L U
j jx x  

represent the critical values of the j -th component jx , respec-
tively. The initialization population is represented by equation 
(2).

. , .(0) | (0)L v
i j i j i j ix x x x≤ ≤ 	 (2)

In equation (2), 1, 2,..., ; 1, 2,...,i NP j D= = . (0)ix  stands 
for the 0th generation’s i -th individual. , (0)j ix  means the 
0th generation individual i ’s j -th gene. NP  stands for the 
population size. The next step is to randomly generate various 
groups of individuals, represented by equation (3).

, , , ,(0) (0,1)L U L
j i j i j i j ix x rand x x= + ⋅ − 	 (3)

In equation (3), (0,1)rand  stands for a uniformly distribut-
ed random value within [0, 1]. The commonly used differential 
strategy in DE is represented by equation (4).

1( 1) ( ) ( ( ) ( ))i i i ijv g x g F x g x g+ = + ⋅ − 	 (4)

Fig. 2.  Mutation operation.
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In equation (4), 1 2 3i r r r≠ ≠ ≠ . F  stands for a scaling factor. 
( )ix g  refers to the g -th generation’s individual i . The limit-

ing condition for the g -th generation population is represented 
by equation (5).

. , .( ) | ( )L v
i j i j i j ix g x x g x≤ ≤ 	 (5)

The mutated intermediate is represented by equation (6).

. , .( 1) | ( 1)L v
i j i j i j ix g x x g x+ ≤ + ≤ 	 (6)

Next, the g -th generation population and its variant interme-
diates are used for crossover in equation (7).

,
,

,

( 1), (0,1) ,
( 1)

( )
j i rand

j i
j i

v g rand CR j j
u g

x g
+ ≤ =+ = 


	 (7)

In equation (7), CR  stands for the crossover probability. 
randj  represents a random integer within [1, D]. The selection 

operation adopts the greedy algorithm in equation (8).

( 1), ( ( 1)) ( ( ))
( 1)

( )
i i i

i
i

u g f u g f x g
x g

x g
+ + ≤

+ = 


	 (8)

Fig. 3 shows the basic steps of DE.

Fig. 3.  Basic steps of differential evolution algorithm.

Firstly, the population is initialized, and some individuals 
are randomly generated to form the initial population. A fit-

ness function can evaluate each individual’ fitness values, and 
some individuals are selected as parent individuals. For each 
parent individual, mutated individuals are generated through 
differential operations. Differential operation involves selecting 
two other individuals from the population and calculating the 
differential individuals through linear combination. For each 
mutated individual, crossover operation is performed to gen-
erate offspring individuals. A fitness function can evaluate each 
offspring individual’s fitness values, and some individuals are 
selected as the parents of the next generation. These three op-
erations are repeated until the termination conditions are met. 
However, DE faces some challenges, such as low search ef-
ficiency for high-dimensional problems and the need for ap-
propriate parameter adjustments to improve algorithm perfor-
mance.

B.	 Combining Differential Evolution Algorithm with AP for 
Sub-Population Partitioning

To optimize the performance of DE, researchers have pro-
posed many improvements and variants, such as adaptive DE, 
multi-objective DE, etc. These improvements and variants 
can be selected and applied according to the characteristics of 
specific problems to improve its search efficiency and conver-
gence speed [20]. Research chooses to merge AP to partition 
the sub-populations of DE. AP is based on the similarity and 
accessibility of data points. It allocates data points to different 
clusters through iterative calculation, making the similarity of 
data points within the same cluster large and the difference of 
different clusters’ data points large. Fig. 4 shows the AP flow-
chart.

The responsibility and availability in AP are indicators used 
to measure the degree of similarity and affinity between data 
points. In AP, each data point calculates its own responsibil-
ity and availability based on the similarity and affinity with 
other data points. Responsibility indicates the suitability to 
which a data point selects other data points as its pattern, while 
availability indicates the suitability to which other data points 
choose that data point as their pattern [21]. Specifically, for a 
data point i , its responsibility ,( )r i k  refers to the suitability 
of data point k  for i  as its pattern. It is equal to the sum of the 

Fig. 4.  Flow chart of AP algorithm.
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degree to which k  chooses i  as its attribution and the degree 
to which k  chooses other data points j  as its attribution minus 
the sum of the degree to which j  chooses k  as its pattern and 
j  chooses other data point l as its attribution in equation (9).

( ) ( ) ( ){,  ,  ,  ,  ( )}r i k s i k max a j k s j k= − + 	 (9)

In equation (9), ,( )s i k  represents i  and k ’s similarity. 
,( )a j k  represents the degree to which j  chooses k  as its 

mode availability. Availability ,( )a i k  indicates the suitability 
of k ’s choice of i  as its mode. It is equal to the sum of the 
responsiveness of i  selecting k  as its mode and i  selecting j  
as its mode minus the maximum sum of the responsiveness of 
k  selecting j  as its mode and k  selecting other data point l as 
its mode in equation (10).

( ) ( ) (, 0, , 0,{ ( ,{ )})}a i k min r k k sum max r j k= + 	 (10)

In equation (10), sum  represents the sum of all data points 
j . To better utilize the information from the previous iteration 

while reducing data fluctuations, during the information trans-
mission process, the value from the previous iteration will be 
multiplied by 1 λ−  times and the current value will be multi-
plied by λ  times. The change in responsiveness is represented 
by equation (11).

( , ) (1 ) ( , ) ( , )lastr i k r i k r i kλ= − × + 	 (11)

Equation (12) represents the change of availability.

( , ) (1 ) ( , ) ( , )lasta i k a i k a i kλ= − × + 	 (12)

By iteratively calculating responsibility and availability, AP 
divides data points into multiple clusters and selects one data 

point from each cluster as its pattern. In AP, self-availability is 
a special case of availability. It represents the degree to which 
data points choose themselves as their patterns. Self-availabili-
ty is calculated by subtracting the sum of the responsibilities of 
data points selecting themselves as their patterns and other data 
points selecting themselves as their patterns from the sum of 
the responsibilities of other data points selecting themselves as 
their patterns, as shown in equation (13).

( ) ( ),  0, ,  0{ ( { ( )})}, ,a i i min r i i sum max r j i= + 	 (13)

In equation (13), sum  represents the sum of all data points 
j . In AP, self-availability plays a role in self-evaluation, indi-

cating the degree to which the data point is considered suitable 
for its own cluster. If the self-availability is positive, it indicates 
that the data point is considered a good pattern and becomes a 
representative of its cluster. If the self-availability is negative, 
it indicates that the data point is not suitable as a pattern and 
will not be selected as a representative of clustering. The com-
bination of self-availability and membership helps AP achieve 
adaptive clustering. By iteratively calculating responsiveness 
and belonging, data points will automatically adjust their rela-
tionships with each other, forming stable clustering results. Fig. 
5 shows the sub-population partitioning based on AP.

The sub-population partitioning method based on AP can 
be applied to various optimization problems, helping to solve 
complex and high-dimensional optimizing problems, and im-
proving the efficiency and accuracy of optimization algorithms. 
Meanwhile, this method can also be combined with other op-
timization algorithms to further improve optimization perfor-
mance. Backpropagation Neural Networks (BPNN) are used to 
optimize and train AP clustering algorithm. By comparing the 
predicted output of the output layer with the target value, the 
network achieves fine adjustment of the weight, so as to reduce 

Fig. 5.  Sub-population division process.
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the prediction error. This process involves several iterations 
until the network output reaches the desired level of accuracy. 
The transmission of data in the network first passes through the 
input layer, then into the hidden layer, and finally generates the 
prediction result at the output layer. The error is evaluated by 
comparing the predicted value of the network with the actual 
observed value, and then using the gradient descent algorithm 
to optimize the weight and bias of the network. This circular 
process of forward and backpropagation continues until a 
preset termination condition is met. The number of nodes in 
the input layer is directly related to the feature dimension of 
the input data, while the number of nodes in the hidden layer is 
the optimal solution obtained through experimental adjustment, 
which is usually determined by trial and error, as described in 
formula (14) [22].

m n l a= + + 	 (14)

In equation (14), a  is the constant from 1 to 10, m  is the 
number of nodes in the hidden layer, l  is the number of nodes in 
the output layer, and n  is the number of nodes in the input lay-
er. Through this method, BPNN can learn the complex mapping 
relationship between input data and output results, and provide 
an accurate prediction model for building energy efficiency op-
timization design. In the neural network model of this study, the 
number of nodes in the output layer is determined according to 
the number of target variables involved in the research problem. 
The nonlinear activation function is used in the output layer to 
enhance the prediction ability of the model. Among the many 
nonlinear activation functions, hyperbolic functions are widely 
used because of their ability to handle outputs in the range [-1, 
1], which makes them particularly suitable for nonlinear trans-
formations of hidden layers. The specific expression of hyper-
bolic function is given in formula (15).

1( )
1 xf x

e
=

+
	 (15)

In Formula (15), through this setup, the network can more 
effectively capture and learn complex nonlinear relationships 
between input data and output results, thereby improving 
prediction accuracy and model performance. There is a direct 
correlation between the sample size used in the experiment and 
the accuracy of the model's predictions. Increasing the number 
of samples can improve the response accuracy of the model, 
but this improvement will gradually become saturated with the 
increase of the sample size. When the sample size reaches a 
certain threshold, the accuracy of the model will stabilize at a 
specific level, and further increasing the sample size will not 
lead to significant accuracy improvement. At the same time, the 
expansion of the scale of the network will lead to the increase of 
the complexity of the mapping relationship. When initializing 
network weights, there are usually two strategies: one is to give 
the weights a small enough initial value to avoid saturation of 
the activation function; The second is to ensure that the weights 
are initialized to a balanced number of positive and negative 
values. This approach helps to ensure that the selected model 

has the best generalization ability and prediction accuracy when 
dealing with real-world problems. In integrated circuits, AP is 
widely used in circuit fault diagnosis and testing. Integrated 
circuits are complex circuit systems composed of various elec-
tronic components, which may have faults or defects. Through 
AP, faults in circuits can be identified and classified. Fig. 6 
shows the specific steps.

Fig. 6.  Fault identification and classification steps in a circuit.

In Fig. 6, in the fault diagnosis of integrated circuits, the AP 
clustering algorithm is applied through a continuous iterative 
process, starting from data collection and feature extraction, 
to build a similarity matrix to quantify the similarity between 
components. After initializing the algorithm parameters, the 
damping coefficient controls the propagation of information 
among the circuit nodes, and the priority affects the number of 
clusters. In the iterative calculation, the responsiveness and be-
longingness of each node are updated to assess their suitability 
as cluster centers. With the progress of the algorithm, the center 
node of the cluster is gradually determined, and other samples 
are allocated to the corresponding cluster based on similarity. 
Finally, the clustering results are verified to ensure accuracy, 
provide basis for fault analysis, identify fault causes, and pro-
pose solutions.

IV. Performance Analysis of Virtual Simulation of 
Integrated Circuits Integrating AP and Differential 

Evolution Algorithm

Two 2.5DIC benchmark sets were selected from dies in 
IWLS ‘05 and Opencores benchmarks, assuming 20 scan chains 
per Die and a test frequency f set to 50MHz. In this experiment, 
the algorithm is verified by using Matlab R2010a software on 
an Intel computer equipped with 4G memory. For differential 
evolution algorithm and adaptive particle swarm clustering 
algorithm, after a series of parameter tuning experiments, the 
following optimal parameter combinations are determined to 
ensure the optimal performance of the algorithm on test sched-
uling problems. The differential evolution algorithm selects a 
scaling factor F of 0.8, a crossover probability Cr of 0.9, and a 
population size of 50. For the adaptive particle cluster cluster-
ing algorithm, the damping coefficient is determined to be 0.6, 
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and the priority p is 1.5. Such parameter configuration helps the 
algorithm to automatically identify the cluster center of circuit 
components without the need to define the number of classes 
in advance, thus effectively supporting the fault diagnosis pro-
cess. The study first analyzed the performance of AP and DE, 
and then conducted virtual simulation and verification of the 
optimized circuit configuration. By analyzing and comparing 
simulation results, the performance and reliability of the circuit 
can be evaluated, and necessary adjustments and improvements 
can be made.

A.	 Performance Analysis of Integrating AP and Differen-
tial Evolution Algorithm

To test the performance of integrating AP and DE, a com-
parative analysis was conducted between separate DE, separate 
AP, Ant Colony Algorithm (ACA), Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO), and Artificial Neural Net-
work (ANN), Simulated Annealing Algorithm (SAA). These 
algorithms are all optimization algorithms, but they differ when 
dealing with optimization problems. The following is a com-
parative analysis of these algorithms, and Table I is the results 
of different indicators.

In Table I, the algorithm combination combining DE and AP 

has the best performance, its accuracy reaches 94.26%, recall 
rate is 93.41%, F1 value is 88.59%, convergence speed is 56.77 
seconds, and stability is 93.17%. This shows that the fusion al-
gorithm has high accuracy and reliability in identifying circuit 
faults and optimizing parameters. When using DE or AP alone, 
performance is slightly lower than fusion algorithms, but still 
better than GA, SAA, ACA, PSO, and ANN. In particular, the 
convergence speed of the fusion algorithm is the fastest, which 
means that it can find a solution in a short time, which is espe-
cially important for the circuit design and testing process re-
quiring fast iteration and real-time feedback, indicating that the 
fusion AP clustering algorithm and differential evolution algo-
rithm have higher accuracy and better performance. To further 
test the performance of fusion AP and DE, the precision, recall, 
and fitness of fusion AP and DE were compared and analyzed 
with PSO in Fig. 7.

Fig. 7(a) shows the fusion of AP and DE, with a relative-
ly high precision rate above 0.9, and a recall above 0.8. Fig. 
7(b) shows the accuracy and recall of PSO, ranging from 0.7 to 
0.8. This indicates that the fusion of AP and DE has higher per-
formance. To verify the clustering effect of AP, a visualization 
method was used to analyze and compare the clustering results 
in Fig. 8.

TABLE I
Different Index Results of Six Algorithms

Algorithm index Precision(%) Recall(%) F1 value(%) Rate of convergence(s) Stability(%)
DE+AP 94.26 93.41 88.59 56.77 93.17
DE 83.27 81.53 80.26 76.39 88.23
AP 82.73 88.97 83.69 78.52 83.64
GA 73.68 82.38 76.30 70.67 87.31
SAA 86.11 77.25 76.25 39.71 84.15
ACA 69.34 69.58 70.38 48.26 72.64
PSO 81.27 82.34 82.55 52.34 83.55
ANN 78.59 76.53 79.69 47.19 80.42

    
Fig. 7.  Comparison of accuracy, recall and fitness of different algorithms: (a) AP+DE; (b) particle swarm optimization algorithm.
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Fig. 8(a) presents the original integrated circuit data. Fig. 
8(b) shows the integrated circuit data after clustering. AP clus-
ters data points on the similarity matrix, with the goal of min-
imizing the distance between data points and their class rep-
resentative points. AP performs well in clustering, especially 
without pre-defining the classes. It can identify the position and 
number of class centers automatically, maximizing the sum of 
similarities between all data points and the nearest class repre-
sentative point.

B.	 Virtual Simulation Performance Analysis of Integrated 
Circuits

In the developed circuit simulation tool, the method of in-
tegrating AP and DE is used. The circuit is built in the circuit 
simulation tool, with a scanning frequency range of 0.1 GHz-1 
GHz and a gradient of 0.1 GHz. The S parameter results are 
compared in Fig. 9.

Fig. 9.  Integrated circuit simulation diagram and S parameter: (a) integrated 
circuit virtual simulation diagram; (b) sparameter.

Fig. 9(a) shows the virtual simulation of the integrated cir-
cuit, with the scanning frequency set to 0.1 GHz-1 GHz. Fig. 
9(b) shows a comparison of the results of fusing AP and DE, 
as well as individual DE. The points corresponded to each fre-
quency coincide, and the results were consistent, indicating that 
using the fusion AP and DE to calculate the S parameter was 
feasible. Further analysis is conducted on the performance of in-
tegrating AP and DE in dealing with complex circuit problems, 
and the accuracy and efficiency of PSO in dealing with com-
plex circuit problems are compared in Fig. 10. In the context 
of circuit simulation and fault diagnosis, accuracy is a measure 

Fig. 8 Clustering effect of AP algorithm: (a) raw data; (b) clustering result.



ELECTRONICS, VOL. 29, NO. 2, DECEMBER 2025 51

of an algorithm's ability to correctly identify faults or optimize 
parameters. It is determined by calculating the percentage of 
instances in which the algorithm correctly predicts a failure 
or finds an effective solution to the total number of instances. 
Efficiency refers to the speed at which an algorithm solves a 
problem, including the use of computational resources and the 
time it takes to solve the problem. In circuit design, efficient 
algorithms can complete simulation and optimization in a 
relatively short time, thus speeding up the design cycle.

Fig. 10.  Accuracy and efficiency in dealing with complex circuit problems: (a) 
the accuracy; (b) the efficiency.

In Fig. 10, the fusion of AP and DE had higher accuracy and 
efficiency. After 300 iterations, the accuracy reached 89% and 
the efficiency reached 100%, indicating that the fusion of AP 
and DE performed better when dealing with complex integrated 
circuit problems. To observe the mean features of the sequence 
before and after change point detection, the following is a graph 
of the mean features before and after change point detection in 
Fig. 11.

Fig. 11.  The mean value feature map before and after change point detection: 
(a) mean value of sample point features before detection; (b) mean of the 
features of the sample points after detection.

The straight line in Fig. 11(a) represents the data mean fea-
ture of the unchanged point model. The straight line in Fig. 
11(b) represents the data mean feature under the change point 
model, which divided the data into two segments. Each seg-
ment characterized the mean of these data, which was more in 
line with the true data. This indicates that the proposed DE can 
detect the position of change points and better explain the char-
acteristics of normal distribution means.

V. Conclusion

Virtual simulation provides an effective means for integrated 
circuit design to simulate circuit operation on a computer. It 
helps to detect and solve problems early in the design phase, 
thereby reducing manufacturing costs and shortening research 
and development cycles. The study adopted a simulation meth-
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 od that integrates AP and DE, aiming to improve the accuracy 
of circuit fault diagnosis and the efficiency of circuit parameter 
optimization. These experiments confirm that the fusion meth-
od of AP and DE performs well in terms of precision, ultimately 
stabilizing above 0.9. Its recall remains above 0.8. Specifically, 
after 300 iterations, the accuracy of this method reaches 89% 
and the efficiency reaches 100%. Compared to traditional sim-
ulation methods, this fusion algorithm exhibits higher accuracy 
and efficiency in circuit fault diagnosis and parameter optimi-
zation. However, this method of integrating AP and DE is com-
plex, involving multiple parameters and operations, resulting in 
increased computational difficulty and time cost. To improve 
the efficiency and reliability of virtual simulation of integrated 
circuits, future research can explore more optimization meth-
ods.
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